Pyroxamide is a potent inhibitor of histone deacetylase 1 (HDAC1) with an ID50 of 100 nM. Pyroxamide can induce apoptosis and cell cycle arrest in leukemia.
Tubulin/HDAC-IN-1 is a dual tubulin and HDAC-IN-1 inhibitor through CH/π interaction with tubulin and hydrogen bond interaction with HDAC8. Tubulin/HDAC-IN-1 inhibits tubulin polymerization and selectively inhibits HDAC8 (IC50: 150 nM). Tubulin/HDAC-IN-1 has cytotoxicity against various human cancer cells, also arrests cell cycle in the G2/M phase and induces cell apoptosis. Tubulin/HDAC-IN-1 can be used in the research of hematologic and solid tumors such as neuroblastoma, leukemia[1].
BRD6688 is a selective HDAC2 inhibitor. BRD6688 increases H4K12 and H3K9 histone acetylation in primary mouse neuronal cells. BRD6688 crosses the blood brain barrier and rescues the memory defects associated with p25 induced neurodegeneration in contextual fear conditioning in a CK-p25 mouse model[1].
Nanatinostat (CHR-3996) is a potent, class I selective and orally active histone deacetylase (HDAC) inhibitor with an IC50 of 8 nM[1].
Spiruchostatin A is a potent HDAC inhibitor with an IC50 value of 2 nM. Spiruchostatin A can induce apoptosis, has antitumor activity and may be used in leukemia studies[1][2].
HDAC1-IN-4 (JX34) is a potent Plasmodium falciparum HDAC1 inhibitor shows antimalarial activity (IC50 < 5 nM) and lower cytotoxicity[1].
LMK-235 is a potent and selective HDAC4/5 inhibitor, inhibits HDAC5, HDAC4, HDAC6, HDAC1, HDAC2, HDAC11 and HDAC8, with IC50s of 4.22 nM, 11.9 nM, 55.7 nM, 320 nM, 881 nM, 852 nM and 1278 nM, respectively, and is used in cancer research.
J22352 is a PROTAC (proteolysis-targeting chimeras)-like and highly selective HDAC6 inhibitor with an IC50 value of 4.7 nM. J22352 promotes HDAC6 degradation and induces anticancer effects by inhibiting autophagy and eliciting the antitumor immune response in glioblastoma cancers, and leading to the restoration of host antitumor activity by reducing the immunosuppressive activity of PD-L1[1].
Romidepsin is a potent HDAC1 and HDAC2 inhibitor with IC50s of 36 and 47 nM, respectively.
A Zn2+-dependent pan-inhibitor of class I and class II HDACs with a long half-life (12h) in vivo; significantly enhances the migration of astrocytes and accelerates wound repair more effectively than SAHA and VPA; up-regulates the expression of NGF, phospho-TrkA, p-AKT, NF-κB, and Bcl-2, while down-regulates the expression of p75 NTR, phospho-JNK, and Bax.
KR-39038 is an orally active and potent GRK5 (G protein-coupled receptor kinase 5) inhibitor, with an IC50 of 0.02 μM. KR-39038 significantly inhibits angiotensin II-induced cellular hypertrophy through suppression of HDAC5 pathway in neonatal cardiomyocytes. KR-39038 shows profound anti-hypertrophic effects and improved cardiac function. KR-39038 can be used for heart failure research[1].
RTS-V5 is a dual HDAC/proteasome inhibitor with IC50s of 6.9, 18, 15, 0.27, 0.53 μM for HDAC1, HDAC2, HDAC3, HDAC6, HDAC8, respectively.
CG-200745 is a potent HDAC inhibitor, with IC50s of <3 μM for sensitive non-small cell lung cancer (NSCLC) cell lines. CG-200745 induces the accumulation of p53, promotes p53-dependent transactivation, and enhances the expression of proteins encoded by p53 target genes, MDM2 and p21 (Waf1/Cip1) in human prostate cancer cells[1]. CG-200745 attenuates phosphorylation of p38 MAPK in kidneys and it has a renoprotective effect by suppressing renal fibrosis and inflammation in a unilateral ureteral obstruction (UUO) mouse model[2].
(S)-Trichostatin A ((S)-TSA) 是一种 HDAC6 选择性抑制剂,对斑马鱼 HDAC6 和人 HDAC6 的 IC50 值分别为 9.88 nM和 11.1 nM。(S)-Trichostatin A 弱抑制其他人 HDAC。
HFY-4A is a HDAC inhibitor. HFY-4A inhibits breast cancer cell proliferation, migration, and invasion, and induces cell apoptosis. HFY-4A induces immunogenic cell death (ICD). HFY-4A inhibits tumor growth in breast cancer xenograft mouse models[1].
KT-531 (KT531) is a potent, selective HDAC6 inhibitor with IC50 of 8.5 nM, displays 39-fold selectivity.
HDAC-IN-45 (Compound 14) is a small molecule HDAC inhibitor and has anticancer activity, also can forms a hydrogenbond with residue Y303. HDAC-IN-45 (Compound 14) has substantial inhibitory effects towards HDAC1, 2 and 3 isoforms with IC50 values of 0.108, 0.585 and 0.563 μM respectively[1].
BChE/HDAC6-IN-1 is a potent and selective dual BChE/HDAC6 inhibitor with IC50 values of 4 and 8.9 nM, respectively. BChE/HDAC6-IN-1 ameliorates the cognitive impairment in an Aβ1–42-induced mouse model and has the potental for AD research[1].
AES-135, a hydroxamic acid-based HDAC inhibitor, prolongs survival in an orthotopic mouse model of pancreatic cancer. AES-135 inhibits HDAC3, HDAC6, HDAC8, and HDAC11 with IC50s ranging from 190-1100 nM[1].
Crotonoside is isolated from Chinese medicinal herb, Croton. Crotonoside inhibits FLT3 and HDAC3/6, exhibits selective inhibition in acute myeloid leukemia (AML) cells. Crotonoside could be a promising new lead compound for the treatment of AML[1].
HDAC/HSP90-IN-3 (compound J5) is a potent and selective fungal Hsp90 and HDAC dual inhibitor, with IC50 values of 0.83 and 0.91 μM, respectively. HDAC/HSP90-IN-3 shows antifungal activity against azole resistant C. albicans. HDAC/HSP90-IN-3 can suppress important virulence factors and down-regulate drug-resistant genes ERG11 and CDR1[1].
BRD-6929 (Cpd-60) is a brain-penetrant, selective inhibitor of HDAC1 and HDAC2 (IC50= 1 and 8 nM), extracted from patent US2018360927[1]. BRD-6929 (Cpd-60) shows high-affinity to HDAC1 and HDAC2 with Ki of 0.2 and 1.5 nM, respectively[2]. BRD-6929 (TPB) potentiates the efficacy of gnidimacrin (a PKC Agonist) against latent HIV-1[3].
JNJ-16241199 is an orally active, selective hydroxamate-based histone deacetylase (HDAC) inhibitor, with the IC50 of 3.3 nM and 23 nM for HDAC1 and HDAC8, respectively. JNJ-16241199 induces histone 3 acetylation and strongly increases the expression of p21waf1, cip1 in A2780 ovarian carcinoma cells. JNJ-16241199 induces cell apoptosis and shows anticancer activity in a broad spectrum of human malignancies. JNJ-16241199 can be used for cancer study[1].
HDAC-IN-57 is an orally active inhibitor of histone deacetylases (HDAC), with IC50s of 2.07 nM, 4.71 nM, 2.4 nM and 107 nM for HDAC1, HDAC2, HDAC6, HDAC8, respectively. HDAC-IN-57 can inhibits LSD1, with IC50 of 1.34 μΜ. HDAC-IN-57 induces apoptosis, and has anti-tumor activity[1].
SW-100, a selective histone deacetylase 6 (HDAC6) inhibitor with an IC50 of 2.3 nM, shows at least 1000-fold selectivity for HDAC6 relative to all other HDAC isozymes. SW-100 displays a significantly improved ability to cross the blood-brain-barrier[1].
CM-675 is a dual phosphodiesterase 5 (PDE5) and class I histone deacetylases-selective inhibitor, with IC50 values of 114 nM and 673 nM for PDE5 and HDAC1, respectively. CM-675 has potential to treat Alzheimer’s disease[1].
TH34, an HDAC6/8/10 inhibitor with IC50s of 4.6 μM, 1.9 μM, and 7.7 μM respectively, shows high selectivity over HDAC1/2/3[1].
Pomiferin, a flavonoid from the fruits of Maclura pomifera, acts as an potential inhibitor of HDAC, with an IC50 of 1.05 μM, and also potently inhibits mTOR (IC50, 6.2 µM).
HDAC6-IN-26 (compound 23) is a potent inhibitor of HDAC6[1].
Butyric acid is a histone deacetylase (HDAC) inhibitor, with anti-tumor effects in several cancers.