Cell apoptosis, sometimes called programmed cell death, is a cellular self-destruction method to remove old and damaged cells during development and aging to protect cells from external disturbances and maintain homeostasis. Apoptosis also occurs as a defense mechanism such as in immune reactions or when cells are damaged by disease or noxious agents.

Apoptosis is controlled by many genes and involves two fundamental pathways: the extrinsic pathway, which transmits death signals by the death receptor (DR), and the intrinsic or mitochondrial pathway. The extrinsic apoptotic pathway is activated by the binding of the death ligand to DRs, including FasL, TNF-α, and TRAIL, on the plasma membrane. The DR, adaptor protein (FADD), and associated apoptosis signaling molecule (caspase-8) form the death-inducing signaling complex (DISC), thus leading to the activation of the effector caspase cascade (caspase-3, -6, and -7). The mitochondria-mediated intrinsic apoptosis pathway is regulated by Bcl-2 family proteins, including proapoptotic (Bid, Bax, Bak) and antiapoptotic proteins (Bcl-2, Bcl-xL).

Abnormalities in cell apoptosis can be a significant component of diseases such as cancer, autoimmune lymphoproliferative syndrome, AIDS, ischemia, and neurode-generative diseases. These diseases may benefit from artificially inhibiting or activating apoptosis. A short list of potential methods of anti-apoptotic therapy includes stimulation of the IAP (inhibitors of apoptosis proteins) family of proteins, caspase inhibition, PARP (poly [ADP-ribose] polymerase) inhibition, stimulation of the PKB/Akt (protein kinase B) pathway, and inhibition of Bcl-2 proteins.

Ferroptosis and necroptosis are recently recognized forms of regulated cell death that differs considerably from apoptosis. Misregulated ferroptosis or necroptosis have also been implicated in multiple physiological and pathological processes, including cancer cell death, neurotoxicity, neurodegenerative diseases, etc.

References:
[1] Susan Elmore. Toxicol Pathol. 2007; 35(4): 495–516.
[2] Cao L, et al. J Cell Death. 2016 Dec 29;9:19-29.
[3] Dasgupta A, et al. Int J Mol Sci. 2017 Jan; 18(1): 23.
[4] Xie Y, et al. Cell Death Differ. 2016 Mar;23(3):369-79.


Anti-infection >
Arenavirus Bacterial CMV Enterovirus Filovirus Fungal HBV HCV HIV HSV Influenza Virus Parasite Reverse Transcriptase RSV SARS-CoV
Antibody-drug Conjugate >
ADC Cytotoxin ADC Linker Drug-Linker Conjugates for ADC PROTAC-linker Conjugate for PAC
Apoptosis >
Apoptosis Bcl-2 Family c-Myc Caspase DAPK Ferroptosis IAP MDM-2/p53 PKD RIP kinase Survivin Thymidylate Synthase TNF Receptor
Autophagy >
Autophagy LRRK2 ULK Mitophagy
Cell Cycle/DNA Damage >
Antifolate APC ATM/ATR Aurora Kinase Casein Kinase CDK Checkpoint Kinase (Chk) CRISPR/Cas9 Deubiquitinase DNA Alkylator/Crosslinker DNA-PK DNA/RNA Synthesis Eukaryotic Initiation Factor (eIF) G-quadruplex Haspin Kinase HDAC HSP IRE1 Kinesin LIM Kinase (LIMK) Microtubule/Tubulin Mps1 Nucleoside Antimetabolite/Analog p97 PAK PARP PERK Polo-like Kinase (PLK) PPAR RAD51 ROCK Sirtuin SRPK Telomerase TOPK Topoisomerase Wee1
Cytoskeleton >
Arp2/3 Complex Dynamin Gap Junction Protein Integrin Kinesin Microtubule/Tubulin Mps1 Myosin PAK
Epigenetics >
AMPK Aurora Kinase DNA Methyltransferase Epigenetic Reader Domain HDAC Histone Acetyltransferase Histone Demethylase Histone Methyltransferase JAK MicroRNA PARP PKC Sirtuin Protein Arginine Deiminase
GPCR/G Protein >
5-HT Receptor Adenosine Receptor Adenylate Cyclase Adiponectin Receptor Adrenergic Receptor Angiotensin Receptor Bombesin Receptor Bradykinin Receptor Cannabinoid Receptor CaSR CCR CGRP Receptor Cholecystokinin Receptor CRFR CXCR Dopamine Receptor EBI2/GPR183 Endothelin Receptor GHSR Glucagon Receptor Glucocorticoid Receptor GNRH Receptor GPCR19 GPR109A GPR119 GPR120 GPR139 GPR40 GPR55 GPR84 Guanylate Cyclase Histamine Receptor Imidazoline Receptor Leukotriene Receptor LPL Receptor mAChR MCHR1 (GPR24) Melatonin Receptor mGluR Motilin Receptor Neurokinin Receptor Neuropeptide Y Receptor Neurotensin Receptor Opioid Receptor Orexin Receptor (OX Receptor) Oxytocin Receptor P2Y Receptor Prostaglandin Receptor Protease-Activated Receptor (PAR) Ras RGS Protein Sigma Receptor Somatostatin Receptor TSH Receptor Urotensin Receptor Vasopressin Receptor Melanocortin Receptor
Immunology/Inflammation >
Aryl Hydrocarbon Receptor CCR Complement System COX CXCR FLAP Histamine Receptor IFNAR Interleukin Related IRAK MyD88 NO Synthase NOD-like Receptor (NLR) PD-1/PD-L1 PGE synthase Salt-inducible Kinase (SIK) SPHK STING Thrombopoietin Receptor Toll-like Receptor (TLR) Arginase
JAK/STAT Signaling >
EGFR JAK Pim STAT
MAPK/ERK Pathway >
ERK JNK KLF MAP3K MAP4K MAPKAPK2 (MK2) MEK Mixed Lineage Kinase MNK p38 MAPK Raf Ribosomal S6 Kinase (RSK)
Membrane Transporter/Ion Channel >
ATP Synthase BCRP Calcium Channel CFTR Chloride Channel CRAC Channel CRM1 EAAT2 GABA Receptor GlyT HCN Channel iGluR Monoamine Transporter Monocarboxylate Transporter Na+/Ca2+ Exchanger Na+/HCO3- Cotransporter Na+/K+ ATPase nAChR NKCC P-glycoprotein P2X Receptor Potassium Channel Proton Pump SGLT Sodium Channel TRP Channel URAT1
Metabolic Enzyme/Protease >
15-PGDH 5 alpha Reductase 5-Lipoxygenase Acetyl-CoA Carboxylase Acyltransferase Adenosine Deaminase Adenosine Kinase Aldehyde Dehydrogenase (ALDH) Aldose Reductase Aminopeptidase Angiotensin-converting Enzyme (ACE) ATGL ATP Citrate Lyase Carbonic Anhydrase Carboxypeptidase Cathepsin CETP COMT Cytochrome P450 Dipeptidyl Peptidase Dopamine β-hydroxylase E1/E2/E3 Enzyme Elastase Enolase FAAH FABP Factor Xa Farnesyl Transferase Fatty Acid Synthase (FAS) FXR Glucokinase GSNOR Gutathione S-transferase HCV Protease Hexokinase HIF/HIF Prolyl-Hydroxylase HIV Integrase HIV Protease HMG-CoA Reductase (HMGCR) HSP Indoleamine 2,3-Dioxygenase (IDO) Isocitrate Dehydrogenase (IDH) Lactate Dehydrogenase LXR MAGL Mineralocorticoid Receptor Mitochondrial Metabolism MMP Nampt NEDD8-activating Enzyme Neprilysin PAI-1 PDHK PGC-1α Phosphatase Phosphodiesterase (PDE) Phospholipase Procollagen C Proteinase Proteasome Pyruvate Kinase RAR/RXR Renin ROR Ser/Thr Protease SGK Stearoyl-CoA Desaturase (SCD) Thrombin Tryptophan Hydroxylase Tyrosinase Xanthine Oxidase
Neuronal Signaling >
5-HT Receptor AChE Adenosine Kinase Amyloid-β Beta-secretase CaMK CGRP Receptor COMT Dopamine Receptor Dopamine Transporter FAAH GABA Receptor GlyT iGluR Imidazoline Receptor mAChR Melatonin Receptor Monoamine Oxidase nAChR Neurokinin Receptor Opioid Receptor Serotonin Transporter γ-secretase
NF-κB >
NF-κB IKK Keap1-Nrf2 MALT1
PI3K/Akt/mTOR >
Akt AMPK ATM/ATR DNA-PK GSK-3 MELK mTOR PDK-1 PI3K PI4K PIKfyve PTEN
PROTAC >
PROTAC E3 Ligase Ligand-Linker Conjugate Ligand for E3 Ligase PROTAC Linker PROTAC-linker Conjugate for PAC
Protein Tyrosine Kinase/RTK >
Ack1 ALK Bcr-Abl BMX Kinase Btk c-Fms c-Kit c-Met/HGFR Discoidin Domain Receptor DYRK EGFR Ephrin Receptor FAK FGFR FLT3 IGF-1R Insulin Receptor IRAK Itk PDGFR PKA Pyk2 ROS Src Syk TAM Receptor Trk Receptor VEGFR
Stem Cell/Wnt >
Casein Kinase ERK Gli GSK-3 Hedgehog Hippo (MST) JAK Notch Oct3/4 PKA Porcupine ROCK sFRP-1 Smo STAT TGF-beta/Smad Wnt YAP β-catenin γ-secretase
TGF-beta/Smad >
TGF-beta/Smad PKC ROCK TGF-β Receptor
Vitamin D Related >
VD/VDR
Others >
Androgen Receptor Aromatase Estrogen Receptor/ERR Progesterone Receptor Thyroid Hormone Receptor Others

Obatoclax Mesylate

Obatoclax is an antagonist of the BCL-2 family proteins. It binds to BCL-2 with a Ki of 220 nM.

  • CAS Number: 803712-79-0
  • MF: C21H23N3O4S
  • MW: 413.490
  • Catalog: Bcl-2 Family
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

Cell-permeable Caspase-1 Inhibitor I trifluoroacetate salt

Ac-AAVALLPAVLLALLAP-YVAD-CHO is a cell-permeable caspase-1 inhibitor that has antitumor activity[1].

  • CAS Number: 201608-12-0
  • MF: C97H160N20O24
  • MW:
  • Catalog: Caspase
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

Nec-4

Nec-4, a tricyclic derivative, is a potent receptor interacting protein 1 (RIP1) inhibitor, with an IC50 of 2.6 μM, Ki of 0.46 μM.

  • CAS Number: 1041644-43-2
  • MF: C15H13ClFN3O
  • MW: 305.73
  • Catalog: RIP kinase
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

STACHYOSE TETRAHYDRATE

Stachyose is a prebiotic, a non-reducing tetrasaccharide in the rafnose family of oligosaccharides with few side efects.

  • CAS Number: 10094-58-3
  • MF: C24H50O25
  • MW: 738.639
  • Catalog: Apoptosis
  • Density: N/A
  • Boiling Point: 1044.2ºC at 760 mmHg
  • Melting Point: 95-105 °C
  • Flash Point: 585.3ºC

STAT3-SH2 domain inhibitor 1

STAT3-SH2 domain inhibitor 1 is a potent Src Homology 2 (SH2) Domain of STAT3 (STAT3-SH2 domain) inhibitor with a Kd value of 1.57 μM. STAT3-SH2 domain inhibitor 1 inhibits STAT3 signaling transduction and transcriptional activation. STAT3-SH2 domain inhibitor 1 induces apoptosis in gastric cancer cells. STAT3-SH2 domain inhibitor 1 can be used in research of cancer[1].

  • CAS Number: 2816059-41-1
  • MF: C28H28BF5N2O5S
  • MW: 610.40
  • Catalog: Apoptosis
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

B-Raf IN 9

B-Raf IN 9 (compound 8b) is a potent B-Raf inhibitor, with an IC50 of 24.79 nM. B-Raf IN 9 induces apoptosis and shows cell cycle arrest at G2/M phase. B-Raf IN 9 exhibits potent antitumor activity against human prostate cancer PC-3 cell line, with an IC50 of 7.83 µM[1].

  • CAS Number: 2477725-18-9
  • MF: C23H20N4OS
  • MW: 400.50
  • Catalog: Apoptosis
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

Aurora A inhibitor 2

Aurora A inhibitor 2 (Compound 16h) is a potent Aurora A kinase inhibitor with an IC50 of 21.94 nM. Aurora A inhibitor 2 induces caspase-dependent apoptosis in MDA-MB-231 cells[1].

  • CAS Number: 2412144-74-0
  • MF: C24H26N6O3
  • MW: 446.50
  • Catalog: Apoptosis
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

Xylopine

Xylopine is an aporphine alkaloid with cytotoxic activity on cancer cells. Xylopine induces oxidative stress, causes G2/M cell cycle arrest and apoptosis in cancer cells[1].

  • CAS Number: 517-71-5
  • MF: C18H17NO3
  • MW: 295.33200
  • Catalog: Apoptosis
  • Density: 1.289g/cm3
  • Boiling Point: 483.4ºC at 760mmHg
  • Melting Point: N/A
  • Flash Point: 193.7ºC

Leachianone A

Leachianone A, isolated from Radix Sophorae, has anti-malarial, anti-inflammatory, and cytotoxic potent[1]. Leachianone A induces apoptosis involved both extrinsic and intrinsic pathways[2].

  • CAS Number: 97938-31-3
  • MF: C26H30O6
  • MW: 438.513
  • Catalog: Apoptosis
  • Density: 1.2±0.1 g/cm3
  • Boiling Point: 649.7±55.0 °C at 760 mmHg
  • Melting Point: N/A
  • Flash Point: 218.3±25.0 °C

Sophocarpine

Sophocarpine (monohydrate) is one of the significant alkaloid extracted from the traditional herb medicine Sophora flavescens which has many pharmacological properties such as anti-virus, anti-tumor, anti-inflammatory. Sophocarpine (monohydrate) significantly inhibits the growth of gastric cancer (GC) cells through multiple mechanisms such as induction of autophagy, activation of cell apoptosis and down-regulation of cell survival PI3K/AKT signaling pathway. Sophocarpine (monohydrate) has been demonstrated to have anti-tumor activity in various cancer cells, including hepatocellular carcinoma, prostate cancer and colorectal cancer[1].

  • CAS Number: 145572-44-7
  • MF: C15H22N2O
  • MW: 246.348
  • Catalog: Apoptosis
  • Density: 1.2±0.1 g/cm3
  • Boiling Point: 425.4±45.0 °C at 760 mmHg
  • Melting Point: N/A
  • Flash Point: 194.0±21.1 °C

ODQ

ODQ is a potent and selective soluble guanylyl cyclase (sGC, nitric oxide-activated enzyme) inhibitor. ODQ enhances the pro-apoptotic effects of Cisplatin in human mesothelioma cells[1].

  • CAS Number: 41443-28-1
  • MF: C9H5N3O2
  • MW: 187.155
  • Catalog: Apoptosis
  • Density: 1.6±0.1 g/cm3
  • Boiling Point: 321.3±25.0 °C at 760 mmHg
  • Melting Point: 160-170 °C
  • Flash Point: 148.1±23.2 °C

Fasnall

Fasnall is a selective fatty acid synthase (FASN) inhibitor with an IC50 of 3.71 μM. Fasnall induces apoptosis in HER2+ breast cancer cell lines. Fasnall shows potent anti-tumor activities[1].

  • CAS Number: 929978-58-5
  • MF: C19H22N4S
  • MW: 338.47
  • Catalog: Apoptosis
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

Bendamustine

Bendamustine (SDX-105 free base), a purine analogue, is a DNA cross-linking agent. Bendamustine activates DNA-damage stress response and apoptosis. Bendamustine has potent alkylating, anticancer and antimetabolite properties[1].

  • CAS Number: 16506-27-7
  • MF: C16H21Cl2N3O2
  • MW: 358.263
  • Catalog: Apoptosis
  • Density: 1.3±0.1 g/cm3
  • Boiling Point: 585.2±50.0 °C at 760 mmHg
  • Melting Point: N/A
  • Flash Point: 307.7±30.1 °C

3-hydroxy-DL-Kynurenine

3-Hydroxykynurenine, a metabolite of tryptophan, is a potential endogenous neurotoxin whose increased levels have been described in several neurodegenerative disorders. 3-Hydroxykynurenine induces neuronal apoptosis[1].

  • CAS Number: 484-78-6
  • MF: C10H12N2O4
  • MW: 224.21300
  • Catalog: Apoptosis
  • Density: 1.461g/cm3
  • Boiling Point: 519.3ºC at 760mmHg
  • Melting Point: N/A
  • Flash Point: 267.9ºC

Olanzapine

Olanzapine(LY170053) is a high affinity for 5-HT2 serotonin and D2 dopamine receptor antagonist.IC50 Value:Target: 5-HT ReceptorOlanzapine is a thienobenzodiazepine that blocks especially the serontonin (5-hydroxytryptamine [5-HT]) 5-HT2A and the dopamine D2 receptors (Ki values are 4 and 11 nM respectively) as well as muscarinic (M1), histamine (H1), 5-HT2C, 5-HT3 to 5-HT6, adrenergic (α(l)), and D4 receptors. Atypical antipsychotic for the treatment of schizophrenia. Olanzapine displays anticholinergic properties.

  • CAS Number: 132539-06-1
  • MF: C17H20N4S
  • MW: 312.432
  • Catalog: Apoptosis
  • Density: 1.3±0.1 g/cm3
  • Boiling Point: 476.0±55.0 °C at 760 mmHg
  • Melting Point: 195°C
  • Flash Point: 241.7±31.5 °C

NCX-4016

Nitroaspirin (NCX 4016) is a nitric oxide (NO) donor and a nitro-derivative of Aspirin, which combines with Nitroaspirin to inhibit cyclooxygenase. Nitroaspirin (NCX 4016) has antithrombotic and anti-platelet properties and acts as a direct and irreversible inhibitor of COX-1. Nitroaspirin (NCX 4016) causes significant induction of cell cycle arrest and apoptosis in Cisplatin-resistant human ovarian cancer cells via down-regulation of EGFR/PI3K/STAT3 signaling and modulation of Bcl-2 family proteins[1][2][3][4].

  • CAS Number: 175033-36-0
  • MF: C16H13NO7
  • MW: 331.27700
  • Catalog: Apoptosis
  • Density: 1.347g/cm3
  • Boiling Point: 499.3ºC at 760mmHg
  • Melting Point: 61-62ºC
  • Flash Point: 214.3ºC

Taraxeryl acetate

Taraxerol acetate is a COX-1 and COX-2 inhibitor with IC50 values of 116.3 μM and 94.7 μM, respectively. Taraxerol acetate the has the anticancer potential and induces cell apoptosis[1].

  • CAS Number: 2189-80-2
  • MF: C32H52O2
  • MW: 468.754
  • Catalog: Apoptosis
  • Density: 1.0±0.1 g/cm3
  • Boiling Point: 505.1±49.0 °C at 760 mmHg
  • Melting Point: 303-305ºC
  • Flash Point: 256.2±17.4 °C

CU-3

(5Z,2E)-CU-3 is a potent and selective inhibitor against the α-isozyme of DGK with an IC50 value of 0.6 μM, competitively inhibits the affinity of DGKα for ATP with a Km value of 0.48 mM. (5Z,2E)-CU-3 targets the catalytic region, but not the regulatory region of DGKα. (5Z,2E)-CU-3 has antitumoral and proimmunogenic effects, enhances the apoptosis of cancer cells and the activation of T cells[1].

  • CAS Number: 1815598-71-0
  • MF: C16H12N2O4S3
  • MW: 392.47
  • Catalog: Apoptosis
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

BIBU1361

BIBU1361 induces apoptosis and inhibits autophagy. BIBU1361 inhibits pro-survival pathways Akt/mTOR and gp130/JAK/STAT3, and decreased levels of pro-inflammatory cytokine IL-6[1].

  • CAS Number: 793726-84-8
  • MF: C22H27ClFN7
  • MW: 443.95
  • Catalog: Apoptosis
  • Density: N/A
  • Boiling Point: 663.5ºC at 760 mmHg
  • Melting Point: N/A
  • Flash Point: 355.1ºC

AT101

(R)-(-)-Gossypol acetic acid (AT-101 (acetic acid)) is the levorotatory isomer of a natural product Gossypol. AT-101 is determined to bind to Bcl-2, Mcl-1 and Bcl-xL proteins with Kis of 260±30 nM, 170±10 nM, and 480±40 nM, respectively.

  • CAS Number: 866541-93-7
  • MF: C32H34O10
  • MW: 578.60600
  • Catalog: Bcl-2 Family
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

Gardenin B

Gardenin B is a flavonoid isolated from Baccharis scandens. Gardenin B induces cell death in human leukemia cells involves multiple caspases[1].

  • CAS Number: 2798-20-1
  • MF: C19H18O7
  • MW: 358.342
  • Catalog: Apoptosis
  • Density: 1.3±0.1 g/cm3
  • Boiling Point: 582.0±50.0 °C at 760 mmHg
  • Melting Point: 180-181ºC
  • Flash Point: 210.8±23.6 °C

Merck-22-6

Akt1/Akt2-IN-2 (compound 7) is an allosteric dual Akt1 and Akt2 inhibitor (IC50=138 nM and 212 nM, respectively). Akt1/Akt2-IN-2 increases activity of caspase-3, and inhibits viability of a number of tumor cells[1].

  • CAS Number: 612847-42-4
  • MF: C40H43N7O2
  • MW: 653.81500
  • Catalog: Caspase
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

L-Glutamic acid-d3

L-Glutamic acid-d3 is the deuterium labeled L-Glutamic acid. L-Glutamic acid acts as an excitatory transmitter and an agonist at all subtypes of glutamate receptors (metabotropic, kainate, NMDA, and AMPA). L-Glutamic acid shows a direct activating effect on the release of DA from dopaminergic terminals.

  • CAS Number: 203805-84-9
  • MF: C5H6D3NO4
  • MW: 150.15
  • Catalog: Apoptosis
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

Glycine ethyl ester-13C hydrochloride

Glycine ethyl ester-13C (hydrochloride) is a 13C-labeled Mebendazole.

  • CAS Number: 58420-91-0
  • MF: C313CH10ClNO2
  • MW: 140.57
  • Catalog: Apoptosis
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

S65487 hydrochloride

S65487 (VOB560) hydrochloride is a potent and selective Bcl-2 inhibitor. S65487 hydrochloride is also active on BCL-2 mutations, such as G101V and D103Y. S65487 hydrochloride has poor affinity with MCL-1, BFL-1 and BCL-XL. S65487 hydrochloride induces apoptosis and has anticaner activities[1][2].

  • CAS Number: 1644543-95-2
  • MF: C41H42Cl2N6O4
  • MW: 753.72
  • Catalog: Apoptosis
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

5,7,4'-Trihydroxy-8-(3,3-dimethylallyl)isoflavone

Lupiwighteone is an isoflavone present widely in wild-growing plants, with antioxidant, antimicrobial and anticancer effects. Lupiwighteone induces caspase-dependent and -independent apoptosis on human breast cancer cells via inhibiting PI3K/Akt/mTOR pathway[1][2].

  • CAS Number: 104691-86-3
  • MF: C20H18O5
  • MW: 338.354
  • Catalog: Apoptosis
  • Density: 1.4±0.1 g/cm3
  • Boiling Point: 583.5±50.0 °C at 760 mmHg
  • Melting Point: 133-135℃
  • Flash Point: 211.8±23.6 °C

MYCi361

MYCi361 (NUCC-0196361) is a MYC inhibitor with the Kd of 3.2 μM for binding to MYC. MYCi361 (NUCC-0196361) suppresses tumor growth and enhances anti-PD1 immunotherapy[1].

  • CAS Number: 2289690-31-7
  • MF: C26H16ClF9N2O2
  • MW: 594.86
  • Catalog: c-Myc
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

Gamma-glutamylcysteine TFA

Gamma-glutamylcysteine (TFA) ((γ-glutamylcysteine (TFA)), an intermediate in glutathione (GSH) synthesis, is a dipeptide served as an essential cofactor for the antioxidant enzyme glutathione peroxidase (GPx). Gamma-glutamylcysteine (TFA) also upregulates the level of the anti-inflammatory cytokine IL-10 and reduces the levels of the pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) and attenuates the changes in metalloproteinase activity in oligomeric Aβ40-treated astrocytes[1].

  • CAS Number: 283159-88-6
  • MF: C10H15F3N2O7S
  • MW: 364.30
  • Catalog: TNF Receptor
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

D9

TrxR inhibitor D9 is a potent and selective inhibitor of thioredoxin reductase (TrxR), with an EC50 of 2.8 nM. TrxR inhibitor D9 has the capability to inhibit tumor proliferation both in vitro and in vivo[1][2].

  • CAS Number: 1527513-89-8
  • MF: C25H20AuOPS
  • MW: 596.43
  • Catalog: Apoptosis
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

Boc-Ala-Ala-Asp-pNA

Boc-Ala-Ala-Asp-pNA is a chromogenic substrate of granzyme B. Boc-Ala-Ala-Asp-pNA can be used to test functional activity of granzyme B[1].

  • CAS Number: 201732-83-4
  • MF: C21H29N5O9
  • MW: 495.48
  • Catalog: Caspase
  • Density: 1.3±0.1 g/cm3
  • Boiling Point: 859.6±65.0 °C at 760 mmHg
  • Melting Point: N/A
  • Flash Point: 473.7±34.3 °C