Neochamaejasmine A is a biflavonoid that can be isolated from the roots of Stellera chamaejasme L.. Neochamaejasmine A inhibits proliferation, induces cell cycle arrest and Apoptosis in tumor cells. Neochamaejasmine A can be used in the research of cancers such as prostate cancer, hepatoma cancer[1][2].
GK563 is a selective Ca2+-independent phospholipase A2 (GVIA iPLA2) inhibitor with an IC50 value of 1 nM. GK563 is 22000 times more active against GVIA iPLA2 than GIVA cPLA2. GK563 reduces β-cell apoptosis induced by proinflammatory cytokines, raising the possibility that it can be beneficial in countering autoimmune diseases, such as type 1 diabetes[1].
OT-82 is a potent, selective and orally active inhibitor of NAMPT. OT-82 is selectively toxic to cells of hematopoietic origin and induces cell death in a NAD+ dependent manner. OT-82 is a promising antineoplastic agent for the study of hematological malignancies[1].
β-Elemene ((-)-β-Elemene; Levo-β-elemene) is isolated from natural plant Curcuma wenyujin with an antitumor activity. β-Elemene can induce cell apoptosis.
Z-VAD-AMC is a substrate of caspase-9[1].
DL-alpha-Tocopherol-d9 is the deuterium labeled DL-alpha-Tocopherol[1]. DL-alpha-Tocopherol is a synthetic vitamin E, with antioxidation effect. DL-alpha-Tocopherol protects human skin fibroblasts against the cytotoxic effect of UVB[2].
ROS-generating agent 1 (Compound 2c) covalently modifies the Sec-498 residue of TrxR to generate ROS. ROS-generating agent 1 reduces intracellular TrxR protein level. ROS-generating agent 1 results in ROS-dependent apoptosis and ferroptosis of NCI-H460 cells. ROS-generating agent 1 has anti-cancer activities[1].
Diazepinomicin (TLN-4601) is a secondary metabolite produced by Micromonospora sp. Diazepinomicin (TLN-4601) inhibits the EGF-induced Ras-ERK MAPK signaling pathway and induces apoptosis. An anti-tumor agent for K-Ras mutant models[1].
5,8-Epidioxyergosta-6,9(11),22-trien-3-ol (9,11-Dehydroergosterol peroxide), an important steroid from medicinal mushroom, exerts antitumor activity in several tumor types. 5,8-Epidioxyergosta-6,9(11),22-trien-3-ol inhibits HT29 cell growth by inducing CDKN1A expression, thus causing cell cycle arrest and apoptosis[1][2].
STAT3-IN-10 (A11) is a STAT3 inhibitor with an IC50 value of 5.18 µM. STAT3-IN-10 directly binds to STAT3 SH2 domain, inhibits tumor cell growth and induces apoptosis in cancer cells[1].
EP12 is a c-Myc inhibitor. EP12 is a c-Myc G4 stabilizer. EP12 induces apoptosis and DNA damage in multiple myeloma cells. EP12 disrupts the nuclear translocation of P65/P50 by interfering with the NF-κB signaling pathway. EP12 inhibits multiple myeloma growth[1].
E64FC26 is a highly potent pan-style inhibitor of Protein Disulfide Isomerase (PDI) with IC50 of 1.9 uM (PDIA1), also inhibits all other members of the PDI family, including PDIA3, PDIA4, TXNDC5, and PDIA6; induces robust ER stress response in MM cells, with expression of ER stress markers ATF4 and CHOP; induces an oxidative stress response in a panel of heterogeneous PI sensitive and resistant cell lines that was characterized by the induction of Nrf2, synergistically enhances the anti-MM cytotoxic effects of PIs; improves survival and enhanced the activity of bortezomib without any adverse effects.
RGB-286147 is a selective and ATP-competitive CDK and CDK-related kinases (CRK) inhibitor with 50 values ranging from 9-839 nM. RGB-286147 shows less active against other non-CDK/CRK kinases. RGB-286147 induces cell apoptosis, and exhibits anti-tumor activity[1].
3,6-Dihydroxyflavone is an anti-cancer agent. 3,6-Dihydroxyflavone dose- and time-dependently decreases cell viability and induces apoptosis by activating caspase cascade, cleaving poly (ADP-ribose) polymerase (PARP). 3,6-Dihydroxyflavone increases intracellular oxidative stress and lipid peroxidation[1].
Nitidine chloride, a potential anti-malarial lead compound derived from Zanthoxylum nitidum (Roxb) DC, exerts potent anticancer activity through diverse pathways, including inducing apoptosis, inhibiting STAT3 signaling cascade, DNA topoisomerase 1 and 2A, ERK and c-Src/FAK associated signaling pathway. Nitidine chloride inhibits LPS-induced inflammatory cytokines production via MAPK and NF-kB pathway[1][2][3][4][5][6].
SKLB0565 is a potent tubulin inhibitor. SKLB0565 shows significant anti-proliferative activity against CRC (colorectal carcinoma) cell lines, with IC50 values ranging from 0.012 μM to 0.081 μM. SKLB0565 causes G2/M phase arrest and mitochondria-mediated intrinsic apoptosis. SKLB0565 inhibits cell migration and disrupted the tube formation of HUVECs[1].
BTM-3566 is an OMA1 activator. BTM-3566 activates the mitochondrial stress response. BTM-3566 induces apoptosis in diffuse large B-cell lymphomas (DLBCL) cell lines[1][2].
Trabectedin (Ecteinascidin-743 or ET-743) is a novel antitumour agent of marine origin with potent antitumour activity both in vitro and in vivo.IC50 Value: 0.1-3.7 nM (breast cancer cell lines) [1]Target: Apoptosis inducer; Anticancerin vitro: Trabectedin induced cytotoxicity and apoptosis in both breast cancer cells in a time and concentration-dependent manner. The expression levels of the death receptor pathway molecules, TRAIL-R1/DR4, TRAIL-R2/DR5, FAS/TNFRSF6, TNF RI/TNFRSF1A, and FADD were significantly increased by 2.6-, 3.1-, 1.7-, 11.2- and 4.0-fold by trabectedin treatment in MCF-7 cells. However, in MDA-MB-453 cells, the mitochondrial pathway related pro-apoptotic proteins Bax, Bad, Cytochrome c, Smac/DIABLO, and Cleaved Caspase-3 expressions were induced by 4.2-, 3.6-, 4.8-, 4.5-, and 4.4-fold, and the expression levels of anti-apoptotic proteins Bcl-2 and Bcl-XL were reduced by 4.8- and 5.2-fold in MDA-MB-453 cells [2]. In vitro treatment with noncytotoxic concentrations of trabectedin selectively inhibited the production of CCL2, CXCL8, IL-6, VEGF, and PTX3 by MLS primary tumor cultures and/or cell lines [3].in vivo: A xenograft mouse model of human MLS showed marked reduction of CCL2, CXCL8, CD68+ infiltrating macrophages, CD31+ tumor vessels, and partial decrease of PTX3 after trabectedin treatment [3]. The MTD of trabectedin was 700 microg/m(2) due to dose-limiting neutropaenia and the RDs in the previously treated/untreated patients were 500 and 600 microg/m(2), respectively. Most common toxicities were nausea/vomiting (67%), asthenia/fatigue (55%) and reversible ASAT/ALAT elevation (51%) [4]. Toxicity: Most common toxicities were nausea/vomiting (67%), asthenia/fatigue (55%) and reversible ASAT/ALAT elevation (51%) [4].Clinical trial: A Study to Assess the Potential Effects of Rifampin on the Pharmacokinetics of Trabectedin in Patients With Advanced Malignancies. Phase 1/2
TH1834 dihydrochloride (TH-1834, TH 1834) is a novel potent specific histone acetyltransferase Tip60 inhibitor; induces apoptosis in breast cancer cell lines with more cytotoxicity than staurosporine; increases the γH2AX foci in the cancer cell lines PC-3 and DU-145 combined with IR; induces apoptosis and increases unrepaired DNA damage in breast cancer cells.
Anticancer agent 84 is an anticancer agent. Anticancer agent 84 represses the transcription of c-MYC by stabilizing the G-quadruplex (G4) structure. Anticancer agent 84 can be used for the research of cancer[1].
Didesmethylrocaglamide, a derivative of Rocaglamide, is a potent eukaryotic initiation factor 4A (eIF4A) inhibitor. Didesmethylrocaglamide has potent growth-inhibitory activity with an IC50 of 5 nM. Didesmethylrocaglamide suppresses multiple growth-promoting signaling pathways and induces apoptosis in tumor cells. Antitumor activity[1].
NUN82647 inhibits cell cycle at G2 phase and induces apoptosis[1].
BAD (103-127) (human), the 25-mer Bad peptide, is derived from the BH3 domain of BAD, can antagonize the function of Bcl-xL. BAD (103-127) (human), the 25-mer Bad peptide, is reported to have almost 800-fold higher affinity for Bcl-XL than the 16-mer peptide[1].
hCAIX-IN-12 is a potent hCAIX inhibitor with IC50 values of 0.74, 10.78 µM for CAIX and CAII, respectively. hCAIX-IN-12 shows antiproliferative effect and induces apoptosis. hCAIX-IN-12 increases ROS production. hCAIX-IN-12 has the potential for the research of colorectal cancer (CRC) [1].
Cyclovirobuxine D (CVB-D) is the main active component of the traditional Chinese medicine Buxus microphylla. Cyclovirobuxine D induces autophagy and attenuates the phosphorylation of Akt and mTOR[1]. Cyclovirobuxine D inhibits cell proliferation of gastric cancer cells through suppression of cell cycle progression and inducement of mitochondria-mediated apoptosis[2]. Cyclovirobuxine D is beneficial for heart failure induced by myocardial infarction[3].
Lidocaine-d6 (hydrochloride) is deuterium labeled Lidocaine (hydrochloride). Lidocaine hydrochloride (Lignocaine hydrochloride) inhibits sodium channels involving complex voltage and using dependence[1]. Lidocaine hydrochloride decreases growth, migration and invasion of gastric carcinoma cells via up-regulating miR-145 expression and further inactivation of MEK/ERK and NF-κB signaling pathways. Lidocaine hydrochloride is an amide derivative and a drug to treat ventricular arrhythmia and an effective tumor-inhibitor[2].
Apremilast D5 (CC-10004 D5) is a deuterium labeled Apremilast. Apremilast is an orally available inhibitor of type-4 cyclic nucleotide phosphodiesterase (PDE-4) with an IC50 of 74 nM. Apremilast inhibits TNF-α release by lipopolysaccharide (LPS) with an IC50 of 104 nM[1].
Lobetyol is a natural compound that can be isolated from Lobelia chinensis. Lobetyol induces apoptosis and cell cycle arrest in MKN45 cells. Lobetyol shows anti-virus, anti-inflammation and anti-tumor activity[1][2].
anti-TNBC agent-2 an anti-Triple negative breast cancer (TNBC) purine derivative. anti-TNBC agent-2 induces MDA-MB-231 cells apoptosis, and inhibits its migration and angiogenesis. anti-TNBC agent-2 inhibits tumor growth and metastasis and reduces the expression of Ki67 and CD31 protein in TNBC xenograft models. anti-TNBC agent-2 can be used for Triple negative breast cancer (TNBC) research[1].
D-Mannitol-2-13C is the 13C labeled D-Mannitol.