Cell apoptosis, sometimes called programmed cell death, is a cellular self-destruction method to remove old and damaged cells during development and aging to protect cells from external disturbances and maintain homeostasis. Apoptosis also occurs as a defense mechanism such as in immune reactions or when cells are damaged by disease or noxious agents.

Apoptosis is controlled by many genes and involves two fundamental pathways: the extrinsic pathway, which transmits death signals by the death receptor (DR), and the intrinsic or mitochondrial pathway. The extrinsic apoptotic pathway is activated by the binding of the death ligand to DRs, including FasL, TNF-α, and TRAIL, on the plasma membrane. The DR, adaptor protein (FADD), and associated apoptosis signaling molecule (caspase-8) form the death-inducing signaling complex (DISC), thus leading to the activation of the effector caspase cascade (caspase-3, -6, and -7). The mitochondria-mediated intrinsic apoptosis pathway is regulated by Bcl-2 family proteins, including proapoptotic (Bid, Bax, Bak) and antiapoptotic proteins (Bcl-2, Bcl-xL).

Abnormalities in cell apoptosis can be a significant component of diseases such as cancer, autoimmune lymphoproliferative syndrome, AIDS, ischemia, and neurode-generative diseases. These diseases may benefit from artificially inhibiting or activating apoptosis. A short list of potential methods of anti-apoptotic therapy includes stimulation of the IAP (inhibitors of apoptosis proteins) family of proteins, caspase inhibition, PARP (poly [ADP-ribose] polymerase) inhibition, stimulation of the PKB/Akt (protein kinase B) pathway, and inhibition of Bcl-2 proteins.

Ferroptosis and necroptosis are recently recognized forms of regulated cell death that differs considerably from apoptosis. Misregulated ferroptosis or necroptosis have also been implicated in multiple physiological and pathological processes, including cancer cell death, neurotoxicity, neurodegenerative diseases, etc.

References:
[1] Susan Elmore. Toxicol Pathol. 2007; 35(4): 495–516.
[2] Cao L, et al. J Cell Death. 2016 Dec 29;9:19-29.
[3] Dasgupta A, et al. Int J Mol Sci. 2017 Jan; 18(1): 23.
[4] Xie Y, et al. Cell Death Differ. 2016 Mar;23(3):369-79.


Anti-infection >
Arenavirus Bacterial CMV Enterovirus Filovirus Fungal HBV HCV HIV HSV Influenza Virus Parasite Reverse Transcriptase RSV SARS-CoV
Antibody-drug Conjugate >
ADC Cytotoxin ADC Linker Drug-Linker Conjugates for ADC PROTAC-linker Conjugate for PAC
Apoptosis >
Apoptosis Bcl-2 Family c-Myc Caspase DAPK Ferroptosis IAP MDM-2/p53 PKD RIP kinase Survivin Thymidylate Synthase TNF Receptor
Autophagy >
Autophagy LRRK2 ULK Mitophagy
Cell Cycle/DNA Damage >
Antifolate APC ATM/ATR Aurora Kinase Casein Kinase CDK Checkpoint Kinase (Chk) CRISPR/Cas9 Deubiquitinase DNA Alkylator/Crosslinker DNA-PK DNA/RNA Synthesis Eukaryotic Initiation Factor (eIF) G-quadruplex Haspin Kinase HDAC HSP IRE1 Kinesin LIM Kinase (LIMK) Microtubule/Tubulin Mps1 Nucleoside Antimetabolite/Analog p97 PAK PARP PERK Polo-like Kinase (PLK) PPAR RAD51 ROCK Sirtuin SRPK Telomerase TOPK Topoisomerase Wee1
Cytoskeleton >
Arp2/3 Complex Dynamin Gap Junction Protein Integrin Kinesin Microtubule/Tubulin Mps1 Myosin PAK
Epigenetics >
AMPK Aurora Kinase DNA Methyltransferase Epigenetic Reader Domain HDAC Histone Acetyltransferase Histone Demethylase Histone Methyltransferase JAK MicroRNA PARP PKC Sirtuin Protein Arginine Deiminase
GPCR/G Protein >
5-HT Receptor Adenosine Receptor Adenylate Cyclase Adiponectin Receptor Adrenergic Receptor Angiotensin Receptor Bombesin Receptor Bradykinin Receptor Cannabinoid Receptor CaSR CCR CGRP Receptor Cholecystokinin Receptor CRFR CXCR Dopamine Receptor EBI2/GPR183 Endothelin Receptor GHSR Glucagon Receptor Glucocorticoid Receptor GNRH Receptor GPCR19 GPR109A GPR119 GPR120 GPR139 GPR40 GPR55 GPR84 Guanylate Cyclase Histamine Receptor Imidazoline Receptor Leukotriene Receptor LPL Receptor mAChR MCHR1 (GPR24) Melatonin Receptor mGluR Motilin Receptor Neurokinin Receptor Neuropeptide Y Receptor Neurotensin Receptor Opioid Receptor Orexin Receptor (OX Receptor) Oxytocin Receptor P2Y Receptor Prostaglandin Receptor Protease-Activated Receptor (PAR) Ras RGS Protein Sigma Receptor Somatostatin Receptor TSH Receptor Urotensin Receptor Vasopressin Receptor Melanocortin Receptor
Immunology/Inflammation >
Aryl Hydrocarbon Receptor CCR Complement System COX CXCR FLAP Histamine Receptor IFNAR Interleukin Related IRAK MyD88 NO Synthase NOD-like Receptor (NLR) PD-1/PD-L1 PGE synthase Salt-inducible Kinase (SIK) SPHK STING Thrombopoietin Receptor Toll-like Receptor (TLR) Arginase
JAK/STAT Signaling >
EGFR JAK Pim STAT
MAPK/ERK Pathway >
ERK JNK KLF MAP3K MAP4K MAPKAPK2 (MK2) MEK Mixed Lineage Kinase MNK p38 MAPK Raf Ribosomal S6 Kinase (RSK)
Membrane Transporter/Ion Channel >
ATP Synthase BCRP Calcium Channel CFTR Chloride Channel CRAC Channel CRM1 EAAT2 GABA Receptor GlyT HCN Channel iGluR Monoamine Transporter Monocarboxylate Transporter Na+/Ca2+ Exchanger Na+/HCO3- Cotransporter Na+/K+ ATPase nAChR NKCC P-glycoprotein P2X Receptor Potassium Channel Proton Pump SGLT Sodium Channel TRP Channel URAT1
Metabolic Enzyme/Protease >
15-PGDH 5 alpha Reductase 5-Lipoxygenase Acetyl-CoA Carboxylase Acyltransferase Adenosine Deaminase Adenosine Kinase Aldehyde Dehydrogenase (ALDH) Aldose Reductase Aminopeptidase Angiotensin-converting Enzyme (ACE) ATGL ATP Citrate Lyase Carbonic Anhydrase Carboxypeptidase Cathepsin CETP COMT Cytochrome P450 Dipeptidyl Peptidase Dopamine β-hydroxylase E1/E2/E3 Enzyme Elastase Enolase FAAH FABP Factor Xa Farnesyl Transferase Fatty Acid Synthase (FAS) FXR Glucokinase GSNOR Gutathione S-transferase HCV Protease Hexokinase HIF/HIF Prolyl-Hydroxylase HIV Integrase HIV Protease HMG-CoA Reductase (HMGCR) HSP Indoleamine 2,3-Dioxygenase (IDO) Isocitrate Dehydrogenase (IDH) Lactate Dehydrogenase LXR MAGL Mineralocorticoid Receptor Mitochondrial Metabolism MMP Nampt NEDD8-activating Enzyme Neprilysin PAI-1 PDHK PGC-1α Phosphatase Phosphodiesterase (PDE) Phospholipase Procollagen C Proteinase Proteasome Pyruvate Kinase RAR/RXR Renin ROR Ser/Thr Protease SGK Stearoyl-CoA Desaturase (SCD) Thrombin Tryptophan Hydroxylase Tyrosinase Xanthine Oxidase
Neuronal Signaling >
5-HT Receptor AChE Adenosine Kinase Amyloid-β Beta-secretase CaMK CGRP Receptor COMT Dopamine Receptor Dopamine Transporter FAAH GABA Receptor GlyT iGluR Imidazoline Receptor mAChR Melatonin Receptor Monoamine Oxidase nAChR Neurokinin Receptor Opioid Receptor Serotonin Transporter γ-secretase
NF-κB >
NF-κB IKK Keap1-Nrf2 MALT1
PI3K/Akt/mTOR >
Akt AMPK ATM/ATR DNA-PK GSK-3 MELK mTOR PDK-1 PI3K PI4K PIKfyve PTEN
PROTAC >
PROTAC E3 Ligase Ligand-Linker Conjugate Ligand for E3 Ligase PROTAC Linker PROTAC-linker Conjugate for PAC
Protein Tyrosine Kinase/RTK >
Ack1 ALK Bcr-Abl BMX Kinase Btk c-Fms c-Kit c-Met/HGFR Discoidin Domain Receptor DYRK EGFR Ephrin Receptor FAK FGFR FLT3 IGF-1R Insulin Receptor IRAK Itk PDGFR PKA Pyk2 ROS Src Syk TAM Receptor Trk Receptor VEGFR
Stem Cell/Wnt >
Casein Kinase ERK Gli GSK-3 Hedgehog Hippo (MST) JAK Notch Oct3/4 PKA Porcupine ROCK sFRP-1 Smo STAT TGF-beta/Smad Wnt YAP β-catenin γ-secretase
TGF-beta/Smad >
TGF-beta/Smad PKC ROCK TGF-β Receptor
Vitamin D Related >
VD/VDR
Others >
Androgen Receptor Aromatase Estrogen Receptor/ERR Progesterone Receptor Thyroid Hormone Receptor Others

Baohuoside I

Baohuoside I, a flavonoid isolated from Epimedium koreanum Nakai, acts as an inhibitor of CXCR4, downregulates CXCR4 expression, induces apoptosis and shows anti-tumor activity.

  • CAS Number: 113558-15-9
  • MF: C27H30O10
  • MW: 514.521
  • Catalog: Apoptosis
  • Density: 1.5±0.1 g/cm3
  • Boiling Point: 759.4±60.0 °C at 760 mmHg
  • Melting Point: N/A
  • Flash Point: 253.9±26.4 °C

Chonglou Saponin VII

Paris saponin VII (Chonglou Saponin VII) is a steroidal saponin isolated from the roots and rhizomes of Trillium tschonoskii Maxim. Paris saponin VII-induced apoptosis in K562/ADR cells is associated with Akt/MAPK and the inhibition of P-gp. Paris saponin VII attenuates mitochondrial membrane potential, increases the expression of apoptosis-related proteins, such as Bax and cytochrome c, and decreases the protein expression levels of Bcl-2, caspase-9, caspase-3, PARP-1, and p-Akt. Paris saponin VII induces a robust autophagy in K562/ADR cells and provides a biochemical basis in the treatment of leukemia[1].

  • CAS Number: 68124-04-9
  • MF: C51H82O21
  • MW: 1031.184
  • Catalog: Bcl-2 Family
  • Density: 1.5±0.1 g/cm3
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

Damulin B

Damulin B is a dammarane-type saponin found in Gynostemma pentaphyllum.Damulin B can induce cell apoptosis and has anti-cancer activities in vitro[1][2].

  • CAS Number: 1202868-75-4
  • MF: C42H70O13
  • MW: 783.00
  • Catalog: Apoptosis
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

C2 Ceramide

C2 Ceramide (Ceramide 2) is the main lipid of the stratum corneum and a protein phosphatase 1 (PP1) activator. C2 Ceramide activates PP2A and ceramide-activated protein phosphatase (CAPP). C2 Ceramide induces cells differentiation and apoptosis, inhibits mitochondrial respiratory chain complex III. C2 Ceramide is also a skin conditioning agent that protects the epidermal barrier from water loss[1][2][3][4][5].

  • CAS Number: 3102-57-6
  • MF: C20H39NO3
  • MW: 341.529
  • Catalog: Apoptosis
  • Density: 1.0±0.1 g/cm3
  • Boiling Point: 532.4±50.0 °C at 760 mmHg
  • Melting Point: 93-96ºC
  • Flash Point: 275.8±30.1 °C

(S)-10-Hydroxycamptothecin-d5

(S)-10-Hydroxycamptothecin-d5 (10-HCPT-d5) is the deuterium labeled (S)-10-Hydroxycamptothecin. (S)-10-Hydroxycamptothecin (10-HCPT) is a DNA topoisomerase I inhibitor. (S)-10-Hydroxycamptothecin exhibits a remarkable apoptosis-inducing effect. (S)-10-Hydroxycamptothecin has the potential for hepatoma, gastric carcinoma, colon cancer and leukaemia research[1][2][3][4].

  • CAS Number: 1330277-66-1
  • MF: C20H11D5N2O5
  • MW: 369.38
  • Catalog: Apoptosis
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

ALK-IN-26

ALK-IN-26 is an ALK inhibitor with IC50 value of 7.0 μM for ALK tyrosine kinase. ALK-IN-26 has good pharmacokinetic properties and blood-brain barrier (BBB) permeability. ALK-IN-26 can induce apoptosis, autophagy and necrosis. ALK-IN-26 can be used in glioblastoma studies[1].

  • CAS Number: 2447607-85-2
  • MF: C24H23NO3S
  • MW: 405.51
  • Catalog: Caspase
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

Azaphilone-9

A fungal natural product that binds to HuR and inhibits HuR-RNA interaction in vitro with IC50 of 1.2 uM; inhibits HuR-AU-rich elements (ARE) interaction and blocks key RNA-binding residues of HuR.

  • CAS Number: 1448460-87-4
  • MF: C21H23BrO5
  • MW: 435.314
  • Catalog: Apoptosis
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

CDK/HDAC-IN-2

CDK/HDAC-IN-2 is a potent HDAC/CDK dual inhibitor with IC50 of 6.4, 0.25, 45, >1000, 8.63, 0.30, >1000 nM for HDAC1, HDAC2, HDAC3, HDAC6,8, CDK1, CDK2, CDK4,6,7, respectively. CDK/HDAC-IN-2 shows excellent antiproliferative activities. CDK/HDAC-IN-2 induces apoptosis and cell cycle arrest at G2/M phase. CDK/HDAC-IN-2 shows potent antitumor efficacy[1].

  • CAS Number: 2580938-58-3
  • MF: C25H20Cl2N6O3
  • MW: 523.37
  • Catalog: Apoptosis
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

Solasodine

Solasodine(Purapuridine) is a poisonous alkaloid chemical compound that occurs in plants of the Solanaceae family. Solasodine showed selective cytotoxicity against cervical cancer cell line (HeLa) and human myeloid leukemia cell line (U937).IC50 Value: 12.17 ± 3.3 uM (Hela cell line)[1]Target: Anticancerin vitro: Mouse embryonic teratocarcinoma P19 cells exposed to solasodine for 2 days followed by a 5-day washout differentiated into cholinergic neurons that expressed specific neuronal markers and displayed important axonal formation that continued growing even 30 days after treatment [2].in vivo: A 2-week infusion ofsolasodine into the left ventricle of the rat brain followed by a 3-week washout resulted in a significant increase in bromodeoxyuridine uptake by cells of the ependymal layer, subventricular zone, and cortex that co-localized with doublecortin immunostaining, demonstrating the proliferative and differentiating properties of solasodine on neuronal progenitors. Solasodine treatment in rats resulted in a dramatic increase in expression of the cholesterol- and drug-binding translocator protein in ependymal cells, suggesting a possible role played by neurosteroid production in solasodine-induced neurogenesis. In GAD65-GFP mice that express the green fluorescent protein under the control of the glutamic acid decarboxylase 65-kDa promoter, solasodine treatment increased the number of GABAergic progenitors and neuroblasts generated in the subventricular zone and present in the olfactory migratory tract [2]. intraperitoneal (i.p.) injection of solasodine (25 mg/kg) significantly delayed (p < 0.01) latency of hind limb tonic extensor (HLTE) phase in the PCT-induced convulsions. In the MES model, solasodine significantly reduced (p < 0.001) duration of HLTE at 25, 50, and 100 mg/kg, i.p. in a dose-dependent manner [3]. Oral administration (80 mg/kg body wt/day for 30 days) of solasodine (extracted and isolated from the berries of the Solanum xanthocarpum) to intact dogs significantly decreased the epithelial cell height of cauda epididymides [4].

  • CAS Number: 126-17-0
  • MF: C27H43NO2
  • MW: 413.636
  • Catalog: MDM-2/p53
  • Density: 1.1±0.1 g/cm3
  • Boiling Point: 537.9±50.0 °C at 760 mmHg
  • Melting Point: 284 °C (dec.)(lit.)
  • Flash Point: 279.1±30.1 °C

c-Met/HDAC-IN-2

c-Met/HDAC-IN-2 is a highly potent c-Met and HDAC dual inhibitor with IC50s of 18.49 nM and 5.40 nM for HDAC1 and c-Met, respectively. c-Met/HDAC-IN-2 has antiproliferative activities against certain cancer cell lines. c-Met/HDAC-IN-2 can cause G2/M-phase arrest and induce apoptosis in HCT-116. c-Met/HDAC-IN-2 can be used for researching anti-cancer resistance[1].

  • CAS Number: 2740495-53-6
  • MF: C34H33N5O7
  • MW: 623.66
  • Catalog: Apoptosis
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

Scoulerine

Scoulerine ((-)-Scoulerine), an isoquinoline alkaloid, is a potent antimitotic compound. Scoulerine is also an inhibitor of BACE1 (ß-site amyloid precursor protein cleaving enzyme 1). Scoulerine inhibits proliferation, arrests cell cycle, and induces apoptosis in cancer cells[1].

  • CAS Number: 6451-73-6
  • MF: C19H21NO4
  • MW: 327.374
  • Catalog: Apoptosis
  • Density: 1.4±0.1 g/cm3
  • Boiling Point: 503.3±50.0 °C at 760 mmHg
  • Melting Point: 192ºC
  • Flash Point: 258.2±30.1 °C

RIPK1-IN-9

RIPK1-IN-9 (example 45), a dihydronaphthyridone compound, is a potent and selective RIPK1 inhibitor. RIPK1-IN-9 inhibits U937 cell (IC50=2 nM) and L929 cell (IC50=1.3 nM)[1].

  • CAS Number: 2682889-57-0
  • MF: C26H25FN6O2
  • MW: 472.51
  • Catalog: RIP kinase
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

L-Glutamic acid-5-13C

L-Glutamic acid-5-13C is the 13C-labeled L-Glutamic acid. L-Glutamic acid acts as an excitatory transmitter and an agonist at all subtypes of glutamate receptors (metabotropic, kainate, NMDA, and AMPA). L-Glutamic acid shows a direct activating effect on the release of DA from dopaminergic terminals.

  • CAS Number: 81202-00-8
  • MF: C413CH9NO4
  • MW: 148.12200
  • Catalog: Apoptosis
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: 205ºC (dec.)(lit.)
  • Flash Point: N/A

13-Methyltetradecanoic acid

13-Methyltetradecanoic acid (13-MTD), a saturated branched-chain fatty acid with potent anticancer effects. 13-Methyltetradecanoic acid induces apoptosis in many types of human cancer cells[1][2].

  • CAS Number: 2485-71-4
  • MF: C15H30O2
  • MW: 242.40
  • Catalog: Apoptosis
  • Density: 0.894 g/cm3
  • Boiling Point: 355.5ºC at 760 mmHg
  • Melting Point: N/A
  • Flash Point: 197.4ºC

Monensin

Monensin is a lipid-soluble naturally occurring bioactive ionophore produced by Streptomyces spp. Monensin can bind protons and monovalent cations. Monensin exhibits a broad spectrum activity against opportunistic pathogens of humans in both drug sensitive and resistant strains. Monensin also induces apoptosis in multiple cancer cell lines[1][2].

  • CAS Number: 17090-79-8
  • MF: C36H61NaO11
  • MW: 670.871
  • Catalog: Bacterial
  • Density: 1.2±0.1 g/cm3
  • Boiling Point: 766.3±60.0 °C at 760 mmHg
  • Melting Point: 103-105°C
  • Flash Point: 229.2±26.4 °C

IZTZ-1

IZTZ-1, an imidazole-benzothiazole conjugate, is a c-MYC G4 ligand. IZTZ-1 is able to downregulate the c-MYC expression by stabilizing c-MYC G4. IZTZ-1 induces cell cycle arrest, apoptosis, thereby inhibiting cell proliferation in B16 cells. IZTZ-1 shows antitumor activity, and can be used for melanoma research[1].

  • CAS Number: 2636771-45-2
  • MF: C32H35N7S
  • MW: 549.73
  • Catalog: Apoptosis
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

SP 141

SP-141 is a specific inhibitor of MDM2. SP-141 promotes MDM2 auto-ubiquitination and degradation. SP-141 might be used for the research of pancreatic cancer and breast cancer cells[1].

  • CAS Number: 1253491-42-7
  • MF: C22H16N2O
  • MW: 324.37500
  • Catalog: MDM-2/p53
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

Azurin p28 peptide

Azurin p28 peptide is a tumor-penetrated antitumor peptide. Azurin p28 peptide redues proteasomal degradation of p53 through formation of a p28: p53 complex. Azurin p28 peptide induces apoptosis or cell cycle arrest. Azurin p28 peptide inhibits p53-positive tumor growths. Azurin p28 peptide shows antiangiogenic effect by inhibiting phosphorylation of VEGFR-2, FAK and Akt[1][2][3].

  • CAS Number: 897026-25-4
  • MF: C122H197N31O47S2
  • MW: 2914.18
  • Catalog: Apoptosis
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

SM-164

SM-164 is a cell-permeable Smac mimetic compound. SM-164 binds to XIAP protein containing both the BIR2 and BIR3 domains with an IC50 value of 1.39 nM and functions as an extremely potent antagonist of XIAP.

  • CAS Number: 957135-43-2
  • MF: C62H84N14O6
  • MW: 1121.42000
  • Catalog: IAP
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

Calcimycin

Calcimycin (A23187) is an antibiotic and a unique divalent cation ionophore (like calcium and magnesium). It induces Ca2+-dependent cell death by increasing intracellular calcium concentration. Calcimycin inhibits the growth of Gram-positive bacteria and some fungi. Calcimycin also inhibits the activity of ATPase and uncouples oxidative phosphorylation of mammalian cells. It induces apoptosis[1][2][3][4].

  • CAS Number: 52665-69-7
  • MF: C29H37N3O6
  • MW: 523.621
  • Catalog: Apoptosis
  • Density: 1.3±0.1 g/cm3
  • Boiling Point: 710.3±55.0 °C at 760 mmHg
  • Melting Point: 187-190 °C
  • Flash Point: 383.4±31.5 °C

AX-024 hydrochloride

AX-024 hydrochloride is an cytokine release inhibitor which can strongly inhibit the production of interleukin-6 (IL-6), tumor necrosis factor-α (TNFα), interferon-γ (IFN-γ), IL-10 and IL-17A.

  • CAS Number: 1704801-24-0
  • MF: C21H23ClFNO2
  • MW: 375.86
  • Catalog: TNF Receptor
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

Lexatumumab

Lexatumumab (HGS-ETR 2) is a human agonistic TRAIL receptor 2 (TRAIL-R2, DR5, APO-2) IgG4κ type monoclonal antibody. Lexatumumab induces Apoptosis in malignant mesothelioma. Lexatumumab can be used for malignant pleural mesothelioma (MPM) research[1].

  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

(-)-Pinoresinol

(-)-Pinoresinol is a plant-derived tetrahydrofuran lignan that inhibits α-glucosidase and acts as a hypoglycemic agent. (-)-Pinoresinol has some anti-inflammatory effects and acts as a chemopreventive agent, inducing increased apoptosis and cell cycle G2/M arrest[1].

  • CAS Number: 81446-29-9
  • MF: C20H22O6
  • MW: 358.38500
  • Catalog: Apoptosis
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

Sunitinib malate

Sunitinib Malate (SU 11248 Malate) is a potent tyrosine kinase inhibitor targeting VEGFR2 and PDGFRβ with IC50s of 80 nM and 2 nM, respectively.

  • CAS Number: 341031-54-7
  • MF: C26H33FN4O7
  • MW: 532.561
  • Catalog: Apoptosis
  • Density: 1.3600 g/mL at 25 °C(lit.)
  • Boiling Point: 156 °C(lit.)
  • Melting Point: 189-191°C
  • Flash Point: 163 °F

Ulinastatin

Ulinastatin (Uristatin) is a trypsin and serine protease inhibitor. Ulinastatin is the main protein binding inhibitor of various trypsin, chymotrypsin, and various pancreatic proteases. Ulinastatin shows neuroprotective, anti-inflammatory, anti-apoptotic, anti-oxidant effects[1][2].

  • CAS Number: 80449-31-6
  • MF: C13H16O3
  • MW: 220.264
  • Catalog: Apoptosis
  • Density: 1.2±0.1 g/cm3
  • Boiling Point: 331.5±42.0 °C at 760 mmHg
  • Melting Point: N/A
  • Flash Point: 171.0±16.8 °C

Camellianin A

Camellianin A, the main flavonoid in A. nitida leaves, displays anticancer activity and angiotensin converting enzyme (ACE)-inhibitory activity. Camellianin A inhibits the proliferation of the human Hep G2 and MCF-7 cell lines and induces the significant increase of the G0/G1 cell population[1][2].

  • CAS Number: 109232-77-1
  • MF: C29H32O15
  • MW: 620.55500
  • Catalog: Apoptosis
  • Density: 1.64g/cm3
  • Boiling Point: 923ºC at 760 mmHg
  • Melting Point: N/A
  • Flash Point: 302.1ºC

M24

M24 is a Mcl-1 selective inhibitor. M24 exhibits good binding affinity against Mcl-1 with Ki value of 0.33 μM. M24 exhibits good anti-proliferative activity and induce apoptosis in HepG2 cells[1].

  • CAS Number: 2761947-05-9
  • MF: C44H40Cl3N5O11S
  • MW: 953.24
  • Catalog: Bcl-2 Family
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

CMLD010509

CMLD010509 (SDS-1-021) is a highly specific inhibitor of the oncogenic translation program supporting multiple myeloma (MM)-including key oncoproteins such as MYC, MDM2, CCND1, MAF, and MCL-1. CMLD010509 (SDS-1-021) shows an IC50 below 10 nM for most MM cell lines and induces apoptosis. CMLD010509 (SDS-1-021) is a potent and selective translation inhibitor through an eIF4E phosphorylation-independent mechanism[1].

  • CAS Number: 256497-58-2
  • MF: C27H26BrNO7
  • MW: 556.40
  • Catalog: Apoptosis
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

Geraniin

Geraniin is a TNF-α releasing inhibitor with numerous activities including anticancer, anti-inflammatory, and anti-hyperglycemic activities, with an IC50 of 43 μM.

  • CAS Number: 60976-49-0
  • MF: C41H28O27
  • MW: 952.645
  • Catalog: TNF Receptor
  • Density: 2.3±0.1 g/cm3
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

Liproxstatin-1

Liproxstatin-1 is a potent ferroptosis inhibitor, with IC50 of approximately 38 nM.

  • CAS Number: 950455-15-9
  • MF: C19H21ClN4
  • MW: 340.850
  • Catalog: Ferroptosis
  • Density: 1.3±0.1 g/cm3
  • Boiling Point: 581.4±50.0 °C at 760 mmHg
  • Melting Point: N/A
  • Flash Point: 305.4±30.1 °C