Carbohydrate polymers 2015-07-10

Surface characterization and drug release from porous microparticles based on methacrylic monomers and xanthan.

Maria-Andreea Lungan, Marcel Popa, Stefania Racovita, Gabriela Hitruc, Florica Doroftei, Jacques Desbrieres, Silvia Vasiliu

Index: Carbohydr. Polym. 125 , 323-33, (2015)

Full Text: HTML

Abstract

Porous crosslinked microparticles based on glycidyl methacrylate and xanthan were prepared by suspension polymerization and used for loading theophylline, a bronhodilatator drug, in order to obtain new drug delivery systems. The surface morphologies observed by means of SEM and AFM analysis demonstrated that microparticles show a spherical shape and are characterized by a porous structure. The presence of xanthan in the structure of microparticles leads to a decrease of surface roughness and pore diameters as well as to an increase of hydrophilicity degree compared to the micropaticles based only on glycidyl methacrylate. To analyze the in vitro release data various mathematical models were used, such as, first order, Higuchi model, Korsmeyer-Peppas model and Baker-Lonsdale model. Based on the highest values of the correlation coefficient, the analysis of the kinetic data indicate that drug release from G1 and X1 porous microparticles fits similarly well to the first order and Higuchi models and diffusion was the dominant mechanism of drug release. Copyright © 2015 Elsevier Ltd. All rights reserved.

Related Compounds

Structure Name/CAS No. Articles
ammonium persulfate Structure ammonium persulfate
CAS:7727-54-0
Glycidyl methacrylate Structure Glycidyl methacrylate
CAS:106-91-2
Ethylene methacrylate Structure Ethylene methacrylate
CAS:97-90-5
Toluene Structure Toluene
CAS:108-88-3
Benzoyl peroxide Structure Benzoyl peroxide
CAS:94-36-0
BOP reagent Structure BOP reagent
CAS:56602-33-6
Theophylline Structure Theophylline
CAS:58-55-9
Triethylene glycol dimethacrylate Structure Triethylene glycol dimethacrylate
CAS:109-16-0
APS SODIUM SALT Structure APS SODIUM SALT
CAS:102029-95-8