Carbohydrate polymers 2015-10-05

Structural features of soluble cereal arabinoxylan fibers associated with a slow rate of in vitro fermentation by human fecal microbiota.

Pinthip Rumpagaporn, Brad L Reuhs, Amandeep Kaur, John A Patterson, Ali Keshavarzian, Bruce R Hamaker

Index: Carbohydr. Polym. 130 , 191-7, (2015)

Full Text: HTML

Abstract

Most soluble dietary fibers ferment rapidly in the proximal colon, potentially causing discomfort and poor tolerability. Alkali-extracted arabinoxylan isolates from corn, wheat, rice and sorghum brans were prepared, through hydrolysis (except sorghum) and ethanol fractionation, to have a broad range of initial fermentation rates, and their linkage patterns were determined to understand structural aspects related to slow fermentation rate. They were all highly branched polymers with degree of substitution greater than 64%. There was no relationship of molecular mass, arabinose:xylose ratio, or degree of substitution to fermentation rate patterns. Slow fermenting wheat and corn arabinoxylans had much higher amount of terminal xylose in branches than fast fermenting rice and sorghum arabinoxylans. The slowest fermenting wheat arabinoxylan additionally contained a complex trisaccharide side chain with two arabinoses linked at the O-2 and O-3 positions of an arabinose that is O-2 linked to the xylan backbone. Structural features were proposed for tolerable slowly fermentable arabinoxylan with possible beneficial fermentation function into the distal colon. Copyright © 2015 Elsevier Ltd. All rights reserved.

Related Compounds

Structure Name/CAS No. Articles
Sulfuric acid Structure Sulfuric acid
CAS:7664-93-9
Acetone Structure Acetone
CAS:67-64-1
alpha-Amylase Structure alpha-Amylase
CAS:9000-85-5
Glycerol Structure Glycerol
CAS:56-81-5
4-Methylpentanoic acid Structure 4-Methylpentanoic acid
CAS:646-07-1