Biochimica et Biophysica Acta 2015-01-01

A novel ATP-generating machinery to counter nitrosative stress is mediated by substrate-level phosphorylation.

Christopher Auger, Vasu D Appanna

Index: Biochim. Biophys. Acta 1850(1) , 43-50, (2015)

Full Text: HTML

Abstract

It is well-known that elevated amounts of nitric oxide and other reactive nitrogen species (RNS) impact negatively on the tricarboxylic acid (TCA) cycle and oxidative phosphorylation. These perturbations severely compromise O2-dependent energy production. While bacteria are known to adapt to RNS, a key tool employed by macrophages to combat infections, the exact mechanisms are unknown.The bacterium was cultured in a defined mineral medium and cell-free extracts obtained at the same growth phase were utilized for various biochemical studies Blue native polyacrylamide gel electrophoresis followed by in-gel activity assays, high performance liquid chromatography and co-immunoprecipitaton are applied to investigate the effects of RNS on the model microbe Pseudomonas fluorescens.Citrate is channeled away from the tricarboxylic acid cycle using a novel metabolon consisting of citrate lyase (CL), phosphoenolpyruvate carboxylase (PEPC) and pyruvate phosphate dikinase (PPDK). This metabolic engine comprising three disparate enzymes appears to transiently assemble as a supercomplex aimed at ATP synthesis. The up-regulation in the activities of adenylate kinase (AK) and nucleoside diphosphate kinase (NDPK) ensured the efficacy of this ATP-making machine.Microbes may escape the effects of nitrosative stress by re-engineering metabolic networks in order to generate and store ATP anaerobically when the electron transport chain is defective.The molecular configuration described herein provides further understanding of how metabolism plays a key role in the adaptation to nitrosative stress and reveals novel targets that will inform the development of antimicrobial agents to counter RNS-resistant pathogens.Copyright © 2014 Elsevier B.V. All rights reserved.


Related Compounds

Related Articles:

The protein phosphatase Siw14 controls caffeine-induced nuclear localization and phosphorylation of Gln3 via the type 2A protein phosphatases Pph21 and Pph22 in Saccharomyces cerevisiae.

2015-01-01

[J. Biochem. 157(1) , 53-64, (2015)]

Functional study of the Hap4-like genes suggests that the key regulators of carbon metabolism HAP4 and oxidative stress response YAP1 in yeast diverged from a common ancestor.

2014-01-01

[PLoS ONE 9(12) , e112263, (2014)]

The tyrosine phosphatase PTPN14 (Pez) inhibits metastasis by altering protein trafficking.

2015-02-17

[Sci. Signal. 8(364) , ra18, (2015)]

In vitro inhibition of lysine decarboxylase activity by organophosphate esters.

2014-07-01

[Biochem. Pharmacol. 92(3) , 506-16, (2014)]

AMBRA1 links autophagy to cell proliferation and tumorigenesis by promoting c-Myc dephosphorylation and degradation.

2015-01-01

[Nat. Cell Biol. 17(1) , 20-30, (2014)]

More Articles...