Gas chromatography-mass spectrometry method optimized using response surface modeling for the quantitation of fungal off-flavors in grapes and wine.
Navideh Sadoughi, Leigh M Schmidtke, Guillaume Antalick, John W Blackman, Christopher C Steel
Index: J. Agric. Food Chem. 63(11) , 2877-85, (2015)
Full Text: HTML
Abstract
An optimized method for the quantitation of volatile compounds responsible for off-aromas, such as earthy odors, found in wine and grapes was developed. The method involved a fast and simple headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) for simultaneous determination of 2-isopropyl-3-methoxypyrazine, 2-isobutyl-3-methoxypyrazine, 3-octanone, fenchone, 1-octen-3-one, trans-2-octen-1-ol, fenchol, 1-octen-3-ol, 2-methylisoborneol, 2,4,6-trichloroanisole, geosmin, 2,4,6-tribromoanisole, and pentachloroanisole. The extraction of the temperature and time were optimized using response surface methodology in both wine base (WB) and grape base (GB). Low limits of detection (0.1-5 ng/L in WB and 0.05-1.6 in GB) and quantitation (0.3-17 in WB and 0.2-6.2 in GB) with good recoveries (83-131%) and repeatability [4.3-9.8% coefficient of variation (CV) in WB and 5.1-11.1% CV in GB] and reproducibility (3.6-10.2 in WB and 1.9-10.9 in GB) indicate that the method has excellent sensitivity and is suitable for the analysis of these off-flavor compounds in wine and grape juice samples.
Related Compounds
Related Articles:
2015-03-15
[Cancer Res. 75(6) , 1102-12, (2015)]
Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.
2015-04-13
[Biomacromolecules 16(4) , 1382-9, (2015)]
2015-04-22
[J. Ethnopharmacol. 164 , 265-72, (2015)]
2015-01-01
[Bioresour. Technol. 176 , 156-62, (2014)]
Polymerization of affinity ligands on a surface for enhanced ligand display and cell binding.
2014-12-08
[Biomacromolecules 15(12) , 4561-9, (2014)]