Environmental Science and Pollution Research International 2015-10-01

Substrates specialization in lipid compounds and hydrocarbons of Marinobacter genus.

Patricia Bonin, Christophe Vieira, Régis Grimaud, Cécile Militon, Philippe Cuny, Oscar Lima, Sophie Guasco, Corina P D Brussaard, Valérie Michotey

Index: Environ. Sci. Pollut. Res. Int. 22 , 15347-59, (2015)

Full Text: HTML

Abstract

The impact of petroleum contamination and of burrowing macrofauna on abundances of Marinobacter and denitrifiers was tested in marine sediment mesocoms after 3 months incubation. Quantification of this genus by qPCR with a new primer set showed that the main factor favoring Marinobacter abundance was hydrocarbon amendment followed by macrofauna presence. In parallel, proportion of nosZ-harboring bacteria increased in the presence of marcrofauna. Quantitative finding were explained by physiological data from a set of 34 strains and by genomic analysis of 16 genomes spanning 15 different Marinobacter-validated species (Marinobacter hydrocarbonoclasticus, Marinobacter daeopensis, Marinobacter santoriniensis, Marinobacter pelagius, Marinobacter flavimaris, Marinobacter adhaerens, Marinobacter xestospongiae, Marinobacter algicola, Marinobacter vinifirmus, Marinobacter maritimus, Marinobacter psychrophilus, Marinobacter lipoliticus, Marinobacter manganoxydans, Marinobacter excellens, Marinobacter nanhaiticus) and 4 potential novel ones. Among the 105 organic electron donors tested in physiological analysis, Marinobacter pattern appeared narrow for almost all kinds of organic compounds except lipid ones. Strains of this set could oxidize a very large spectrum of lipids belonging to glycerolipids, branched, fatty acyls, and aromatic hydrocarbon classes. Physiological data were comforted by genomic analysis, and genes of alkane 1-monooxygenase, haloalkane dehalogenase, and flavin-binding monooxygenase were detected in most genomes. Denitrification was assessed for several strains belonging to M. hydrocarbonoclasticus, M. vinifirmus, Marinobacter maritinus, and M. pelagius species indicating the possibility to use nitrate as alternative electron acceptor. Higher occurrence of Marinobacter in the presence of petroleum appeared to be the result of a broader physiological trait allowing this genus to use lipids including hydrocarbon as principal electron donors.


Related Compounds

Related Articles:

Escherichia coli kduD encodes an oxidoreductase that converts both sugar and steroid substrates.

2014-06-01

[Appl. Microbiol. Biotechnol. 98(12) , 5471-85, (2014)]

The N terminus of type III secretion needle protein YscF from Yersinia pestis functions to modulate innate immune responses.

2015-04-01

[Infect. Immun. 83(4) , 1507-22, (2015)]

Fingerprinting profile of polysaccharides from Lycium barbarum using multiplex approaches and chemometrics.

2015-07-01

[Int. J. Biol. Macromol. 78 , 230-7, (2015)]

Characterization of the Caenorhabditis elegans HIM-6/BLM helicase: unwinding recombination intermediates.

2014-01-01

[PLoS ONE 9(7) , e102402, (2014)]

Production of the Escherichia coli common pilus by uropathogenic E. coli is associated with adherence to HeLa and HTB-4 cells and invasion of mouse bladder urothelium.

2014-01-01

[PLoS ONE 9(7) , e101200, (2014)]

More Articles...