Journal of Agricultural and Food Chemistry 2015-09-02

Polyphenolic Profile of Pear Leaves with Different Resistance to Pear Psylla (Cacopsylla pyri).

Milica M Fotirić Akšić, Dragana Č Dabić, Uroš M Gašić, Gordan N Zec, Todor B Vulić, Živoslav Lj Tešić, Maja M Natić

Index: J. Agric. Food Chem. 63 , 7476-86, (2015)

Full Text: HTML

Abstract

The European pear psylla, Cacopsylla pyri L. (Hemiptera: Psyllidae), is one of the most serious arthropod pests of pear. Since proper control of this pest is essential, better understanding of the complex plant-pest relationship is mandatory. This research deals with constitutive polyphenolic profiles in leaves of 22 pear cultivars of diverse origin (P. communis, P. pyrifolia, and P. pyrifolia × P. communis) and different resistance to psylla. The study was designed to show which differences in the polyphenolic profile of leaves from resistant and susceptible pear cultivars could be utilized as information in subsequent breeding programs. The results demonstrated that the leaves of Oriental pear cultivars contained much higher amounts of p-hydroxybenzoic acid, ferulic acid, aesculin, and naringin, that, together with detected 3-O-(6″-O-p-coumaroyl)-hexoside, apigenin, apigenin 7-O-rutinoside, and hispidulin, indicated a clear difference between the species and might represent phenolics responsible for psylla resistance.


Related Compounds

Related Articles:

Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.

2015-04-13

[Biomacromolecules 16(4) , 1382-9, (2015)]

Bacteriophage PBC1 and its endolysin as an antimicrobial agent against Bacillus cereus.

2015-04-01

[Appl. Environ. Microbiol. 81(7) , 2274-83, (2015)]

H4 histamine receptors inhibit steroidogenesis and proliferation in Leydig cells.

2014-12-01

[J. Endocrinol. 223(3) , 241-53, (2014)]

Loading and release mechanism of red clover necrotic mosaic virus derived plant viral nanoparticles for drug delivery of doxorubicin.

2014-12-29

[Small 10(24) , 5126-36, (2014)]

Decreased lipogenesis in white adipose tissue contributes to the resistance to high fat diet-induced obesity in phosphatidylethanolamine N-methyltransferase-deficient mice.

2014-10-01

[Biochim. Biophys. Acta 1851(2) , 152-62, (2015)]

More Articles...