Phytotherapy Research 2014-11-01

Modulating effects of pycnogenol® on oxidative stress and DNA damage induced by sepsis in rats.

Gökçe Taner, Sevtap Aydın, Merve Bacanlı, Zehra Sarıgöl, Tolga Sahin, A Ahmet Başaran, Nurşen Başaran

Index: Phytother Res. 28(11) , 1692-700, (2014)

Full Text: HTML

Abstract

The aim of this study was to evaluate the protective effects of Pycnogenol® (Pyc), a complex plant extract from the bark of French maritime pine, on oxidative stress parameters (superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities and total glutathione (GSH) and malondialdehyde (MDA) levels), an inflammatory cytokine (tumor necrosis factor alpha (TNF-α) level) and also DNA damage in Wistar albino rats. Rats were treated with 100 mg/kg intraperitonally Pyc following the induction of sepsis by cecal ligation and puncture. The decreases in MDA levels and increases in GSH levels, and SOD and GPx activities were observed in the livers and kidneys of Pyc-treated septic rats. Plasma TNF-α level was found to be decreased in the Pyc-treated septic rats. In the lymphocytes, kidney, and liver tissue cells of the sepsis-induced rats, Pyc treatment significantly decreased the DNA damage and oxidative base damage using standard alkaline assay and formamidopyrimidine DNA glycosylase-modified comet assay, respectively. In conclusion, Pyc treatment might have a role in the prevention of sepsis-induced oxidative damage not only by decreasing DNA damage but also increasing the antioxidant status and DNA repair capacity in rats.Copyright © 2014 John Wiley & Sons, Ltd.


Related Compounds

Related Articles:

L. monocytogenes in a cheese processing facility: Learning from contamination scenarios over three years of sampling.

2014-10-17

[Int. J. Food Microbiol. 189 , 98-105, (2014)]

Alpha-fetoprotein, identified as a novel marker for the antioxidant effect of placental extract, exhibits synergistic antioxidant activity in the presence of estradiol.

2014-01-01

[PLoS ONE 9(6) , e99421, (2014)]

Vegetables' juice influences polyol pathway by multiple mechanisms in favour of reducing development of oxidative stress and resultant diabetic complications.

2014-04-01

[Pharmacogn. Mag. 10(Suppl 2) , S383-91, (2014)]

Glucose recognition proteins for glucose sensing at physiological concentrations and temperatures.

2014-07-18

[ACS Chem. Biol. 9(7) , 1595-602, (2014)]

Reservoirs of listeria species in three environmental ecosystems.

2014-09-01

[Appl. Environ. Microbiol. 80(18) , 5583-92, (2014)]

More Articles...