Biodegradation 2010-11-01

para-Nitrophenol 4-monooxygenase and hydroxyquinol 1,2-dioxygenase catalyze sequential transformation of 4-nitrocatechol in Pseudomonas sp. strain WBC-3.

Min Wei, Jun-Jie Zhang, Hong Liu, Ning-Yi Zhou

Index: Biodegradation 21(6) , 915-21, (2010)

Full Text: HTML

Abstract

Pseudomonas sp. strain WBC-3 utilizes para-nitrophenol (PNP) as a sole source of carbon, nitrogen and energy. PnpA (PNP 4-monooxygenase) and PnpB (para-benzoquinone reductase) were shown to be involved in the initial steps of PNP catabolism via hydroquinone. We demonstrated here that PnpA also catalyzed monooxygenation of 4-nitrocatechol (4-NC) to hydroxyquinol, probably via hydroxyquinone. It was the first time that a single-component PNP monooxygenase has been shown to catalyze this conversion. PnpG encoded by a gene located in the PNP degradation cluster was purified as a His-tagged protein and identified as a hydroxyquinol dioxygenase catalyzing a ring-cleavage reaction of hydroxyquinol. Although all the genes necessary for 4-NC metabolism seemed to be present in the PNP degradation cluster in strain WBC-3, it was unable to grow on 4-NC as a sole source of carbon, nitrogen and energy. This was apparently due to the substrate's inability to trigger the expression of genes involved in degradation. Nevertheless, strain WBC-3 could completely degrade both PNP and 4-NC when PNP was used as the inducer, demonstrating its potential in bioremediation of the environment polluted by both 4-NC and PNP.

Related Compounds

Structure Name/CAS No. Articles
1,2,4-Trihydroxybenzene Structure 1,2,4-Trihydroxybenzene
CAS:533-73-3
4-nitrocatechol Structure 4-nitrocatechol
CAS:3316-09-4