Hee Yun Suk, Chen Zhou, Teddy T C Yang, Hong Zhu, Raymond Y L Yu, Opeyemi Olabisi, XiaoYong Yang, Deborah Brancho, Ja-Young Kim, Philipp E Scherer, Philippe G Frank, Michael P Lisanti, John W Calvert, David J Lefer, Jeffery D Molkentin, Alessandra Ghigo, Emilio Hirsch, Jianping Jin, Chi-Wing Chow
Index: J. Biol. Chem. 288(5) , 3477-88, (2013)
Full Text: HTML
Insulin resistance, hyperlipidemia, and cardiovascular complications are common dysregulations of metabolic syndrome. Transplant patients treated with immunosuppressant drugs such as cyclosporine A (CsA), an inhibitor of calcineurin phosphatase, frequently develop similar metabolic complications. Although calcineurin is known to mediate insulin sensitivity by regulating β-cell growth and adipokine gene transcription, its role in lipid homeostasis is poorly understood. Here, we examined lipid homeostasis in mice lacking calcineurin Aβ (CnAβ(-/-)). We show that mice lacking calcineurin Aβ are hyperlipidemic and develop age-dependent insulin resistance. Hyperlipidemia found in CnAβ(-/-) mice is, in part, due to increased lipolysis in adipose tissues, a process mediated by β-adrenergic G-protein-coupled receptor signaling pathways. CnAβ(-/-) mice also exhibit additional pathophysiological phenotypes caused by the potentiated GPCR signaling pathways. A cell autonomous mechanism with sustained cAMP/PKA activation is found in CnAβ(-/-) mice or upon CsA treatment to inhibit calcineurin. Increased PKA activation and cAMP accumulation in CnAβ(-/-) mice, however, are sensitive to phosphodiesterase inhibitor. Indeed, we show that calcineurin regulates degradation of phosphodiesterase 3B, in addition to phosphodiesterase 4D. These results establish a role for calcineurin in lipid homeostasis. These data also indicate that potentiated cAMP signaling pathway may provide an alternative molecular pathogenesis for the metabolic complications elicited by CsA in transplant patients.
Structure | Name/CAS No. | Molecular Formula | Articles |
---|---|---|---|
![]() |
3′,5′-Cyclic nucleotide phosphodiesterase
CAS:9040-59-9 |
C7H8AsNO5 |
Increase in cellular cyclic AMP concentrations reverses the ...
2013-12-01 [Mol. Pharmacol. 84(6) , 787-93, (2013)] |
Regulation of ecto-apyrase CD39 (ENTPD1) expression by phosp...
2013-11-01 [FASEB J. 27(11) , 4419-28, (2013)] |
Inhibition of phosphodiesterase-1 attenuates cold-induced pu...
2013-03-01 [Hypertension 61(3) , 585-92, (2013)] |
Anchored PDE4 regulates chloride conductance in wild-type an...
2014-02-01 [FASEB J. 28(2) , 791-801, (2014)] |
Benzoquinones and terphenyl compounds as phosphodiesterase-4...
2013-03-22 [J. Nat. Prod. 76(3) , 382-7, (2013)] |
Home | MSDS/SDS Database Search | Journals | Product Classification | Biologically Active Compounds | Selling Leads | About Us | Disclaimer
Copyright © 2024 ChemSrc All Rights Reserved