Biochemical Pharmacology 2015-08-15

Pro-migratory actions of the prostacyclin receptor in human breast cancer cells that over-express cyclooxygenase-2.

Sarah E Allison, Nenad Petrovic, Peter I Mackenzie, Michael Murray

Index: Biochem. Pharmacol. 96 , 306-14, (2015)

Full Text: HTML

Abstract

Metastasis is the major cause of death in cancer patients. Elevated expression of cyclooxygenase-2 (COX-2) is observed in many human cancers and over-production of downstream prostaglandins (PGs) has been shown to stimulate metastasis. A role for increased PGE2 production has been proposed, but whether other PGs contribute is currently unclear. In this study the pro-migratory actions of individual PGs were evaluated in MDA-MB-468 breast cancer cells that stably over-expressed COX-2 (MDA-COX-2 cells); cell migration was quantified using 3D-matrigel droplet assays. Inhibition of the prostacyclin and PGE synthases, but not alternate prostanoid synthases, prevented the increase in MDA-COX-2 cell migration produced by arachidonic acid (AA); direct treatment of cells with the stable prostacyclin analogue cicaprost also promoted migration. Pharmacological antagonism and knockdown of the IP receptor decreased cell migration, while antagonists of the alternate DP, EP2, FP, and TP prostanoid receptors were inactive. In support of these findings, activation of the IP receptor also enhanced migration in the MDA-MB-468, MDA-MB-231 and A549 cell lines, and IP receptor knock-down in MDA-COX-2 cells decreased the expression of a number of pro-migratory genes. In further studies, the prostacyclin/IP receptor and PGE2/EP4 receptor pathways were found to be functionally independent and the inhibition of phosphatidylinositol 3-kinase (PI3K) and p38 mitogen-activated protein kinase (MAPK) selectively impaired the IP-receptor-dependent migration in MDA-COX-2 cells. Taken together, the prostacyclin/IP/PI3K-p38 MAPK axis has emerged as a novel pro-migratory pathway in breast cancer cells that over-express COX-2. This information could be utilized in novel treatment strategies to minimize tumor metastasis. Copyright © 2015 Elsevier Inc. All rights reserved.

Related Compounds

Structure Name/CAS No. Articles
Dimethyl sulfoxide Structure Dimethyl sulfoxide
CAS:67-68-5
Direct Blue 14 Structure Direct Blue 14
CAS:72-57-1
Dinoprostone Structure Dinoprostone
CAS:363-24-6
Prostaglandin D2 Structure Prostaglandin D2
CAS:41598-07-6
KT5720 Structure KT5720
CAS:108068-98-0
Tris(2-methyl-2-propanyl) hydrogen orthosilicate Structure Tris(2-methyl-2-propanyl) hydrogen orthosilicate
CAS:18166-43-3
DL-Dithiothreitol Structure DL-Dithiothreitol
CAS:3483-12-3
DOTAP Transfection Reagent Structure DOTAP Transfection Reagent
CAS:144189-73-1
Diphenyleneiodonium chloride Structure Diphenyleneiodonium chloride
CAS:4673-26-1
8-Octanoyloxypyrene-1,3,6-trisulfonic acid trisodium salt Structure 8-Octanoyloxypyrene-1,3,6-trisulfonic acid trisodium salt
CAS:115787-84-3