Journal of chromatography. A 2015-04-03

New method for the determination of bile acids in human plasma by liquid-phase microextraction using liquid chromatography-ion-trap-time-of-flight mass spectrometry.

Maria José Nunes de Paiva, Helvécio Costa Menezes, Júlio César Cardoso da Silva, Rodrigo Ribeiro Resende, Zenilda de Lourdes Cardeal

Index: J. Chromatogr. A. 1388 , 102-9, (2015)

Full Text: HTML

Abstract

Bile acids (BAs) are derived from cholesterol and produced in the liver. The most abundant bile acids in humans are usually conjugated with glycine and taurine and are divided into primary BAs such as cholic acid (CA) and chenodeoxycholic acid (CDCA) and secondary BAs like deoxycholic acid (DCA), lithocholic acid (LCA) and ursodeoxycholic acid (UDCA). The differences amongst individual bile acids (BAs) are significant in order to distinguish different pathological processes and exposure to chemical compounds. Hollow fiber based liquid-phase microextraction (HF-LPME) is a technique that combines sample cleansing, extraction and the concentration of analytes, where a hydrophobic porous capillary membrane is impregnated with an organic extraction solvent and the lumen is filled with microliters of a phase acceptor both organic by nature. The aim of this study was to develop a new method to extract bile acids from plasma through HF-LPME of two phases (octanol as the acceptor phase) using LCMS-IT-TOF. The optimized two-phased LPME procedure for the extraction of bile acids showed limits of detection 1.0 μg L(-1) and limits of quantification of 5.0 μg L(-1). The intra-assay precision ranged from 2.1 to 11.9%. The method developed was linear over the range of 5.0-200.0 μg L(-1) for all analytes. The hollow-fiber liquid-phase microextraction method was applied to human plasma from workers exposed to organic and halogenated solvents and also to unexposed volunteers. The method is simple, low cost and it does not require large amounts of organic solvents, therefore it is quite suitable for the analysis of bile acids exposed to hepatotoxic compounds.Copyright © 2015 Elsevier B.V. All rights reserved.

Related Compounds

Structure Name/CAS No. Articles
Formic Acid Structure Formic Acid
CAS:64-18-6
Hydrochloric acid Structure Hydrochloric acid
CAS:7647-01-0
Acetonitrile Structure Acetonitrile
CAS:75-05-8
sodium sulfate Structure sodium sulfate
CAS:7757-82-6
Methanol Structure Methanol
CAS:67-56-1
Aqueous ammonia Structure Aqueous ammonia
CAS:1336-21-6
Ethyl caprylate Structure Ethyl caprylate
CAS:106-32-1
Sodium TCA Structure Sodium TCA
CAS:650-51-1
acetic acid Structure acetic acid
CAS:64-19-7
1-Octanol Structure 1-Octanol
CAS:111-87-5