前往化源商城

Journal of Biomedical Materials Research, Part A 2015-03-01

RGD-peptide modified alginate by a chemoenzymatic strategy for tissue engineering applications.

Ioanna Sandvig, Kristin Karstensen, Anne Mari Rokstad, Finn Lillelund Aachmann, Kjetil Formo, Axel Sandvig, Gudmund Skjåk-Bræk, Berit Løkensgard Strand

文献索引:J. Biomed. Mater. Res. A 103(3) , 896-906, (2015)

全文:HTML全文

摘要

One of the main challenges in tissue engineering and regenerative medicine is the ability to maintain optimal cell function and survival post-transplantation. Biomaterials such as alginates are commonly used for immunoisolation, while they may also provide structural support to the cell transplants by mimicking the extracellular matrix. In this study, arginine-glycine-aspartate (RGD)-peptide-coupled alginates of tailored composition were produced by adopting a unique chemoenzymatic strategy for substituting the nongelling mannuronic acid on the alginate. Alginates with and without RGD were produced with high and low content of G. Using carbodiimide chemistry 0.1-0.2% of the sugar units were substituted by peptide. Furthermore, the characterization by (1)H-nuclear magnetic resonance (NMR) revealed by-products from the coupling reaction that partly could be removed by coal filtration. Olfactory ensheathing cells (OECs) and myoblasts were grown in two-dimensional (2D) and 3D cultures of RGD-peptide modified or unmodified alginates obtained by the chemoenzymatically strategy and compared to native alginate. Both OECs and myoblasts adhered to the RGD-peptide modified alginates in 2D cultures, forming bipolar protrusions. OEC encapsulation resulted in cell survival for up to 9 days, thus demonstrating the potential for short-term 3D culture. Myoblasts showed long-term survival in 3D cultures, that is, up to 41 days post encapsulation. The RGD modifications did not result in marked changes in cell viability in 3D cultures. We demonstrate herein a unique technique for tailoring peptide substituted alginates with a precise and flexible composition, conserving the gel forming properties relevant for the use of alginate in tissue engineering.© 2014 Wiley Periodicals, Inc.

相关化合物

结构式 名称/CAS号 全部文献
1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐 结构式 1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐
CAS:25952-53-8
氯化钠 结构式 氯化钠
CAS:7647-14-5
甘露醇 结构式 甘露醇
CAS:69-65-8
1,2-二氯乙烷 结构式 1,2-二氯乙烷
CAS:107-06-2
佛司可林 结构式 佛司可林
CAS:66575-29-9
无水氯化钙 结构式 无水氯化钙
CAS:10043-52-4
氯化钠-35cl 结构式 氯化钠-35cl
CAS:20510-55-8
3-(N-吗啉)丙磺酸 结构式 3-(N-吗啉)丙磺酸
CAS:1132-61-2
二水氯化钙 结构式 二水氯化钙
CAS:10035-04-8
钙黄绿素 结构式 钙黄绿素
CAS:154071-48-4