Maria Benavente, Lionel Marcin, Alice Courtois, Martin Lévesque, Edu Ruiz
文献索引:10.1016/j.compositesa.2018.01.005
全文:HTML全文
Degree of cure- and temperature-dependent elastic and viscoelastic models were implemented into ABAQUS to compute the geometrical distortion developed during the RTM manufacturing and post-curing of asymmetric plates and corner shaped parts. Comparisons between the predicted and experimental geometrical distortion for an asymmetric plate reinforced with 3D interlock woven fabric are presented. The results showed that the parts can experience creep behavior when submitted to free-standing post-curing, increasing the total geometrical distortion up to 30 %%, depending on post-curing cycle and part geometry. The numerical results of this work demonstrate that a temperature-dependent viscoelastic model is needed to accurately predict the geometrical distortion evolution developed during cure cycles where post-curing processes are involved.
|
Pelletized cellulose fibres used in twin-screw extrusion for...
2018-04-06 [10.1016/j.compositesa.2018.04.006] |
|
Nonlinear hyperviscoelastic modelling of intra-ply deformati...
2018-04-04 [10.1016/j.compositesa.2018.03.037] |
|
Interlayer polymerization in amine-terminated macromolecular...
2018-04-03 [10.1016/j.compositesa.2018.04.001] |
|
Experimental analysis of the planar compaction and preformin...
2018-04-03 [10.1016/j.compositesa.2018.03.036] |
|
Reduced polyaniline decorated reduced graphene oxide/polyimi...
2018-04-02 [10.1016/j.compositesa.2018.03.035] |
首页 |
期刊大全 |
MSDS查询 |
化工产品分类 |
生物活性化合物 |
关于我们 |
免责声明:知识产权问题请联系 service1@chemsrc.com
Copyright © 2026 ChemSrc All Rights Reserved