Maiju Hietala, Kristiina Oksman
文献索引:10.1016/j.compositesa.2018.04.006
全文:HTML全文
Pelletizing is effective in compacting cellulose fibres, but it also causes fibre breakage and poor dispersion due to increased hydrogen bonding. This study investigated whether fibre dispersion and length could be improved by the addition of a lubricant, a commonly used composite processing aid, into cellulose pellets, or by using pelletized fibres that have not been completely dried to reduce hydrogen bonding. Cellulose pellets with different lubricant and moisture contents were prepared and compounded using twin-screw extrusion with polypropylene with 5 wt% fibre and 50 wt% fibre contents. The fibre dispersion, morphology and mechanical properties of the prepared composites were analysed. Dispersion and composite strength were improved with the addition of 4–6 wt% of lubricant while moisture had a negative effect on both properties. This study demonstrated that pelletization in the presence of a lubricant is a promising way to compact cellulose fibres and enable their continuous processing into biocomposites with improved mechanical properties.
Nonlinear hyperviscoelastic modelling of intra-ply deformati...
2018-04-04 [10.1016/j.compositesa.2018.03.037] |
Interlayer polymerization in amine-terminated macromolecular...
2018-04-03 [10.1016/j.compositesa.2018.04.001] |
Experimental analysis of the planar compaction and preformin...
2018-04-03 [10.1016/j.compositesa.2018.03.036] |
Reduced polyaniline decorated reduced graphene oxide/polyimi...
2018-04-02 [10.1016/j.compositesa.2018.03.035] |
Fatigue of flax-epoxy and other plant fibre composites: Crit...
2018-03-28 [10.1016/j.compositesa.2018.03.034] |
首页 |
期刊大全 |
MSDS查询 |
化工产品分类 |
生物活性化合物 |
关于我们 |
免责声明:知识产权问题请联系 service1@chemsrc.com
Copyright © 2024 ChemSrc All Rights Reserved