Yinhang Zhang, Jang Rak Choi, Soo-Jin Park
文献索引:10.1016/j.compositesa.2018.04.001
全文:HTML全文
Amine-terminated macromolecular chain (ATBN) were covalently grafted on expanded graphite (EG) surface using 4,4′-methylene diphenyl diisocyanate as coupling agent. The functionalization result of the amine-terminated EG (AEG) was demonstrated by various analysis techniques. The AEG was incorporated into the epoxy (EP) matrix to form EP/AEG nanocomposites by interlayer polymerization in the EG interval layers. The grafted ATBN chains on the AEG surfaces can not only enhance the interfacial adhesion of the filler and EP matrix, but can also act as hardener to react with the EP chains covalently to further toughen the fabricated EP nanocomposites. The thermal stability, thermal conductivity, thermos-mechanical, and rheological properties of the EP/AEG nanocomposites were comprehensively studied. The results showed that the novel-designed AEG can significantly enhance the thermal conductivity of the EP composites. Moreover, the as-designed composites show superior thermal stability and thermo-physical properties, making them potentially useful as thermal management materials in electronic devices.
Pelletized cellulose fibres used in twin-screw extrusion for...
2018-04-06 [10.1016/j.compositesa.2018.04.006] |
Nonlinear hyperviscoelastic modelling of intra-ply deformati...
2018-04-04 [10.1016/j.compositesa.2018.03.037] |
Experimental analysis of the planar compaction and preformin...
2018-04-03 [10.1016/j.compositesa.2018.03.036] |
Reduced polyaniline decorated reduced graphene oxide/polyimi...
2018-04-02 [10.1016/j.compositesa.2018.03.035] |
Fatigue of flax-epoxy and other plant fibre composites: Crit...
2018-03-28 [10.1016/j.compositesa.2018.03.034] |
首页 |
期刊大全 |
MSDS查询 |
化工产品分类 |
生物活性化合物 |
关于我们 |
免责声明:知识产权问题请联系 service1@chemsrc.com
Copyright © 2024 ChemSrc All Rights Reserved