Top Suppliers:I want be here



1454846-35-5

1454846-35-5 structure
1454846-35-5 structure
  • Name: lorlatinib
  • Chemical Name: pf-06463922
  • CAS Number: 1454846-35-5
  • Molecular Formula: C21H19FN6O2
  • Molecular Weight: 406.413
  • Catalog: Biochemical Inhibitor Protein tyrosine kinase
  • Create Date: 2018-09-09 12:36:58
  • Modify Date: 2025-08-20 09:15:15
  • Lorlatinib is a potent, dual ALK/ROS1 inhibitor, with Kis of 0.02 nM, 0.07 nM, and 0.7 nM for ROS1, wild type ALK, and ALK-L1196M, respectively.

Name pf-06463922
Synonyms UNII:OSP71S83EU
(R)-2<sup>6</sup>-amino-5<sup>5</sup>-fluoro-1<sup>1</sup>,4,7-trimethyl-6-oxo-1<sup>1</sup>H-3-oxa-7-aza-2(3,5)-pyridina-1(4,3)-pyrazola-5(1,2)-benzenacyclooctaphane-1<sup>5</sup>-carbonitrile
2H-8,4-Methenopyrazolo[4,3-h][2,5,11]benzoxadiazacyclotetradecine-3-carbonitrile, 7-amino-12-fluoro-10,15,16,17-tetrahydro-2,10,16-trimethyl-15-oxo-, (10R)-
(16R)-19-Amino-13-fluoro-4,8,16-trimethyl-9-oxo-17-oxa-4,5,8,20-tetraazatetracyclo[16.3.1.0.0]docosa-1(22),2,5,10,12,14,18,20-octaene-3-carbonitrile
lorlatinib
(10R)-7-amino-12-fluoro-2,10,16-trimethyl-15-oxo-10,15,16,17-tetrahydro-2H-4,8- methenopyrazolo[4,3-h][2,5,11]benzoxadiazacyclotetradecine-3-carbonitrile
PF06463922
PF-06463922
Description Lorlatinib is a potent, dual ALK/ROS1 inhibitor, with Kis of 0.02 nM, 0.07 nM, and 0.7 nM for ROS1, wild type ALK, and ALK-L1196M, respectively.
Related Catalog
Target

Ki: < 0.02 nM (ROS1), < 0.07 nM (ALK WT), 0.7 nM (ALK L1196M)

In Vitro Lorlatinib demonstrates significant cell activity against ALK and a large set of ALK clinical mutations with IC50 ranging from 0.2 nM-77 nM[1]. Lorlatinib significantly inhibits cell proliferation and induces cell apoptosis in the HCC78 human NSCLC cells harboring SLC34A2-ROS1 fusions and the BaF3-CD74-ROS1 cells expressing human CD74-ROS1[2]. Lorlatinib also shows potent growth inhibitory activity and induces apoptosis in the NSCLC cells harboring either non-mutant ALK or mutant ALK fusions[3].
In Vivo In rats, Lorlatinib displays low plasma clearance, a moderate volume of distribution, a reasonable half-life, low propensity for p-glycoprotein 1-mediated efflux and a bioavailability of 100%[1]. In vivo, Lorlatinib shows cytoreductive antitumor efficacy in the NIH3T3 xenograft models expressing human CD74-ROS1 and Fig-ROS1 via inhibition in ROS1 phosphorylation and the downstream signaling molecules, as well as inhibition of the cell cycle protein Cyclin D1 in tumors[2]. In vivo, Lorlatinib also demonstrates marked antitumor activity in mice bearing tumor xenografts expressing EML4-ALK, EML4-ALK-L1196M, EML4-ALK-G1269A, EML4-ALK-G1202R or NPM-ALK[3].
Kinase Assay Recombinant human wild-type and mutant ALK kinase domain proteins (amino acids 1093–1411) are produced in-house using baculoviral expression, preactivated via autophosphorylation with MgATP, and assayed for kinase activity using a microfluidic mobility shift assay. The reactions contained 1.3 nM wild-type ALK or 0.5 nM mutant ALK (appropriate to produce 15-20% phosphorylation of peptide substrate after 1 h of reaction), 3 μM 5-FAM-KKSRGDYMTMQIG-CONH2), 5 mM MgCl2, and the Km level of ATP in 25 mM Hepes, pH 7.1. The inhibitors are shown to be ATP-competitive from kinetic and crystallographic studies. The Ki values are calculated by fitting the conversion (%) to a competitive inhibition equation. ROS1 enzyme is assayed as described above for ALK, except using 0.25 nM recombinant human ROS1 catalytic domain (amino acids 1883-2347). Kinase inhibitor selectivity is evaluated using a 206-kinase panel.
Cell Assay Cells are seeded in 96-well plates in growth medium containing 10% FBS and are cultured overnight at 37°C. The following day, serial dilutions of Lorlatinib or appropriate controls are added to the designated wells, and cells are incubated at 37°C for 72 h. A CellTiter-Glo assay is performed to determine the relative cell numbers. IC50 values are calculated by concentration-response curve fitting using a four-parameter analytical method.
Animal Admin De novoGBM tumorigenesis is initiated in LSL-FIG-ROS1;Cdkn2a−/−;LSL-Luc mice through intracranial stereotactic injections of Adeno-Cre as described previously. Tumor development is monitored using BLI as described below. Once tumors reach a given size (107 p-1·s-1·cm-2·sr-1), animals are randomLy enrolled into vehicle control or 3-, 7-, or 14-d treatment with the indicated doses of Lorlatinib. Drug is administered through s.c. implanted Alzet osmotic pumps. After treatment, mice are killed, GBM tumors are microdissected, and tissues are flash-frozen in liquid N2. The remaining brains are processed for histology.
References

[1]. Johnson TW, et al. Discovery of (10R)-7-amino-12-fluoro-2,10,16-trimethyl-15-oxo-10,15,16,17-tetrahydro-2H-8,4-(metheno)pyrazolo[4,3-h][2,5,11]-benzoxadiazacyclotetradecine-3-carbonitrile (PF-06463922), a macrocyclic inhibitor of anaplastic lymphoma kinas

[2]. Zou HY, et al. PF-06463922 is a potent and selective next-generation ROS1/ALK inhibitor capable of blocking crizotinib-resistant ROS1 mutations. Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):3493-8

[3]. Zou HY, et al. PF-06463922 is a potent and selective next-generation ROS1/ALK inhibitor capable of blocking crizotinib-resistant ROS1 mutations. Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):3493-8.

Density 1.4±0.1 g/cm3
Boiling Point 675.0±55.0 °C at 760 mmHg
Molecular Formula C21H19FN6O2
Molecular Weight 406.413
Flash Point 362.1±31.5 °C
Exact Mass 406.155365
PSA 110.06000
LogP 1.24
Vapour Pressure 0.0±2.1 mmHg at 25°C
Index of Refraction 1.687
Storage condition -20℃
RIDADR NONH for all modes of transport
The content on this webpage is sourced from various professional data sources. If you have any questions or concerns regarding the content, please feel free to contact service1@chemsrc.com.