Mitochondrial Ca(2+) uniporter (MCU)-dependent and MCU-independent Ca(2+) channels coexist in the inner mitochondrial membrane.
Alexander I Bondarenko, Claire Jean-Quartier, Warisara Parichatikanond, Muhammad Rizwan Alam, Markus Waldeck-Weiermair, Roland Malli, Wolfgang F Graier
Index: Pflugers Arch. 466(7) , 1411-20, (2014)
Full Text: HTML
Abstract
A protein referred to as CCDC109A and then renamed to mitochondrial calcium uniporter (MCU) has recently been shown to accomplish mitochondrial Ca(2+) uptake in different cell types. In this study, we investigated whole-mitoplast inward cation currents and single Ca(2+) channel activities in mitoplasts prepared from stable MCU knockdown HeLa cells using the patch-clamp technique. In whole-mitoplast configuration, diminution of MCU considerably reduced inward Ca(2+) and Na(+) currents. This was accompanied by a decrease in occurrence of single channel activity of the intermediate conductance mitochondrial Ca(2+) current (i-MCC). However, ablation of MCU yielded a compensatory 2.3-fold elevation in the occurrence of the extra large conductance mitochondrial Ca(2+) current (xl-MCC), while the occurrence of bursting currents (b-MCC) remained unaltered. These data reveal i-MCC as MCU-dependent current while xl-MCC and b-MCC seem to be rather MCU-independent, thus, pointing to the engagement of at least two molecularly distinct mitochondrial Ca(2+) channels.
Related Compounds
Related Articles:
2014-12-01
[Plast. Reconstr. Surg. 134(6) , 1213-23, (2014)]
Differentiation between human ClC-2 and CFTR Cl- channels with pharmacological agents.
2014-09-01
[Am. J. Physiol. Cell Physiol. 307(5) , C479-92, (2014)]
2014-09-01
[Arch. Toxicol. 88(9) , 1695-709, (2014)]
2014-01-01
[PLoS ONE 9(11) , e112413, (2014)]
2014-09-01
[Cell Biochem. Biophys. 70(1) , 367-81, (2014)]