eLife 2015-01-01

A striatal-enriched intronic GPCR modulates huntingtin levels and toxicity.

Yuwei Yao, Xiaotian Cui, Ismael Al-Ramahi, Xiaoli Sun, Bo Li, Jiapeng Hou, Marian Difiglia, James Palacino, Zhi-Ying Wu, Lixiang Ma, Juan Botas, Boxun Lu

Index: Elife 4 , (2015)

Full Text: HTML

Abstract

Huntington's disease (HD) represents an important model for neurodegenerative disorders and proteinopathies. It is mainly caused by cytotoxicity of the mutant huntingtin protein (Htt) with an expanded polyQ stretch. While Htt is ubiquitously expressed, HD is characterized by selective neurodegeneration of the striatum. Here we report a striatal-enriched orphan G protein-coupled receptor(GPCR) Gpr52 as a stabilizer of Htt in vitro and in vivo. Gpr52 modulates Htt via cAMP-dependent but PKA independent mechanisms. Gpr52 is located within an intron of Rabgap1l, which exhibits epistatic effects on Gpr52-mediated modulation of Htt levels by inhibiting its substrate Rab39B, which co-localizes with Htt and translocates Htt to the endoplasmic reticulum. Finally, reducing Gpr52 suppresses HD phenotypes in both patient iPS-derived neurons and in vivo Drosophila HD models. Thus, our discovery reveals modulation of Htt levels by a striatal-enriched GPCR via its GPCR function, providing insights into the selective neurodegeneration and potential treatment strategies.


Related Compounds

Related Articles:

Comparative in vitro study on magnetic iron oxide nanoparticles for MRI tracking of adipose tissue-derived progenitor cells.

2014-01-01

[PLoS ONE 9(9) , e108055, (2014)]

DNA double-strand breaks by Cr(VI) are targeted to euchromatin and cause ATR-dependent phosphorylation of histone H2AX and its ubiquitination.

2015-01-01

[Toxicol. Sci. 143(1) , 54-63, (2014)]

Hypoxia reduces MAX expression in endothelial cells by unproductive splicing.

2014-12-20

[FEBS Lett. 588(24) , 4784-90, (2014)]

Proteolysis of decellularized extracellular matrices results in loss of fibronectin and cell binding activity.

2015-04-03

[Biochem. Biophys. Res. Commun. 459(2) , 246-51, (2015)]

Flow perfusion co-culture of human mesenchymal stem cells and endothelial cells on biodegradable polymer scaffolds.

2014-07-01

[Ann. Biomed. Eng. 42(7) , 1381-90, (2014)]

More Articles...