Frontiers in Bioscience 2004-09-01

Major factors modulating the serum oxalic acid level in hemodialysis patients.

Yoshihide Ogawa, Noriko Machida, Masahide Jahana, Munehisa Gakiya, Yoshiaki Chinen, Masami Oda, Makoto Morozumi, Kimio Sugaya

Index: Front. Biosci. 9 , 2901-8, (2004)

Full Text: HTML

Abstract

Ascorbic acid overload and vitamin B6 deficiency have been implicated in the development of hyperoxalemia in dialysis patients, but there is still disagreement about this. Hemodialysis patients who are exposed long-term hyperoxalemia may develop secondary oxalosis with an increased risk of cardiac, vascular, and bone disease, and thus may benefit from maintaining a low serum oxalic acid level. In 452 hemodialysis patients, the serum level of oxalic acid was 47.2 +/- 22.9 micromol /l before and 16.9 +/- 10.5 micromol/l after a 4-hour dialysis session, while the ascorbic acid levels were 39.0 +/- 92.7 micromol/l and 6.5 +/- 18.6 micromol/l, the glycolic acid levels were 7.3 +/- 10.1 micromol/l and 0.6 +/- 2.3 micromol/l, and the citric acid levels were 141.3 +/- 54.7 micromol/l and 117.6 +/- 37.2 micromol/l, respectively. Most patients (65.3 percent) had low serum ascorbic acid levels (less than 10 micromol/l) before hemodialysis. The serum level of oxalic acid [Ox] showed a significant positive correlation with the levels of ascorbic acid [AA], glycolic acid [Gly], and creatinine [Cre]: [Ox] = 21.711 + 0.181 x [AA] + 0.174 x [Gly] + 0.171 x [Cre], (all micromol/l, p less than 0.05). In 124 dialysis patients, the 4-pyridoxic acid level was 8.9 +/- 19.6 micromol /l before and 3.9 +/- 8.8 micromol/l after dialysis, and it was not correlated with oxalic acid or glycolic acid. Most dialysis patients (65.3 percent) had low serum levels of ascorbic acid, but a subgroup of patients (12 percent) had high serum ascorbic acid levels (more than 100 micromol/l) associated with hyperoxalemia (88.2 +/- 24.5 micromol/l). High-dose vitamin C supplementation may aggravate hyperoxalemia in hemodialysis patients, so attention should be paid to avoiding this risk.


Related Compounds

Related Articles:

FurC regulates expression of zupT for the central zinc importer ZupT of Cupriavidus metallidurans.

2014-10-01

[J. Bacteriol. 196(19) , 3461-71, (2014)]

Zinc-induced structural changes of the disordered tppp/p25 inhibits its degradation by the proteasome.

2015-01-01

[Biochim. Biophys. Acta 1852(1) , 83-91, (2015)]

Adhesin competence repressor (AdcR) from Streptococcus pyogenes controls adaptive responses to zinc limitation and contributes to virulence.

2015-01-01

[Nucleic Acids Res. 43(1) , 418-32, (2015)]

Bioflocculant production and biosorption of zinc and lead by a novel bacterial species, Achromobacter sp. TERI-IASST N, isolated from oil refinery waste.

2014-10-01

[Chemosphere 113 , 116-24, (2014)]

Curcumin alters the salt bridge-containing turn region in amyloid β(1-42) aggregates.

2014-04-18

[J. Biol. Chem. 289(16) , 11122-31, (2014)]

More Articles...