Journal of Agricultural and Food Chemistry 2015-06-17

Synergistic Potentials of Coffee on Injured Pancreatic Islets and Insulin Action via KATP Channel Blocking in Zebrafish.

Youn Hee Nam, Bin Na Hong, Isabel Rodriguez, Min Gun Ji, Keonwoo Kim, Ung-Jin Kim, Tong Ho Kang

Index: J. Agric. Food Chem. 63 , 5612-21, (2015)

Full Text: HTML

Abstract

Pancreatic islets (PIs) are damaged under diabetic conditions, resulting in decreased PI size. This study examined the regenerative effects of coffee and its components (caffeine, CFI; trigonelline, TRG; chlorogenic acid, CGA) on zebrafish larval PIs and β-cells damaged by administration of alloxan (AX). In addition, the influence of coffee and its active components on KATP channels was investigated using diazoxide (DZ) as a KATP channel activator. PI size and fluorescence intensity were significantly increased in the coffee-treated group relative to the no-treatment group (P < 0.0001). In addition, coffee exerted significant regenerative effects on pancreatic β-cells (p = 0.006). Treatment with TRG and CGA rescued PI damage, and the combination of TRG/CGA had a synergistic effect. In conclusion, the results indicate that coffee has beneficial effects on AX-damaged PIs and may also be useful as a blocker of pancreatic β-cell K(+) channels.


Related Compounds

Related Articles:

Neuroprotective effect of modified Chungsimyeolda-tang, a traditional Korean herbal formula, via autophagy induction in models of Parkinson's disease.

2015-01-15

[J. Ethnopharmacol. 159 , 93-101, (2014)]

Biomolecular imaging with a C60-SIMS/MALDI dual ion source hybrid mass spectrometer: instrumentation, matrix enhancement, and single cell analysis.

2014-11-01

[J. Am. Soc. Mass Spectrom. 25(11) , 1897-907, (2014)]

Itraconazole suppresses the growth of glioblastoma through induction of autophagy: involvement of abnormal cholesterol trafficking.

2014-07-01

[Autophagy 10(7) , 1241-55, (2014)]

Diclofenac toxicity in human intestine ex vivo is not related to the formation of intestinal metabolites.

2015-01-01

[Arch. Toxicol. 89(1) , 107-19, (2015)]

Methionine oxidation accelerates the aggregation and enhances the neurotoxicity of the D178N variant of the human prion protein.

2014-12-01

[Biochim. Biophys. Acta 1842(12 Pt A) , 2345-56, (2014)]

More Articles...