Use of nanoporous Cu(II) ion imprinted polymer as a new sorbent for preconcentration of Cu(II) in water, biological, and agricultural samples and its determination by electrothermal atomic absorption spectrometry.
Hamid Fazelirad, Mohammad Ali Taher, Hamid Ashkenani
Index: J. AOAC Int. 97(4) , 1159-66, (2014)
Full Text: HTML
Abstract
A new and selective Cu(ll) ion imprinted polymer was prepared by formation of 1-(2-pyridylazo)-2-naphthol complex for selective extraction and preconcentration of Cu ions. Polymerization was performed with ethylene glycol dimethacrylate as a crosslinking monomer and methacrylic acid as a functional monomer in the presence of 2,2'-azobis(isobutyronitrile) as an initiator via a bulk polymerization method. The Cu(ll) imprinted polymeric particles were characterized by scanning electron microscopy and IR spectrometry. The imprint Cu ion was removed from the polymeric matrix using 2 M HNO3. Optimum pH for maximum sorption was 5-8. Maximum sorbent capacity and the enrichment factor for Cu(ll) were 11.3 mg/g and 100, respectively. The RSD and LOD of the method were evaluated as +/-4.3% and 8.7 ng/L, respectively. The proposed method is simple, highly selective, and sensitive and can be applied to the determination of ultratrace amounts of Cu in water, biological, and agricultural samples.
Related Compounds
Related Articles:
2015-06-01
[Adv. Funct. Mater. 25(3) , 350-360, (2015)]
An Optically Driven Bistable Janus Rotor with Patterned Metal Coatings.
2015-11-24
[ACS Nano 9 , 10844-51, (2015)]
2015-09-01
[J. Sep. Sci. 38 , 2938-44, (2015)]
Controlled Endolysosomal Release of Agents by pH-responsive Polymer Blend Particles.
2015-07-01
[Pharm. Res. 32 , 2280-91, (2015)]
Polyethylene Glycol Coatings on Plastic Substrates for Chemically Defined Stem Cell Culture.
2015-07-15
[Adv. Healthc. Mater. 4 , 1555-64, (2015)]