Neurochemical Research 2014-08-01

3,4,5-tricaffeoylquinic acid attenuates proteasome inhibition-mediated programmed cell death in differentiated PC12 cells.

Yoon Jeong Nam, Da Hee Lee, Yun Jeong Kim, Yong Kyoo Shin, Dong Suep Sohn, Min Sung Lee, Chung Soo Lee

Index: Neurochem. Res. 39(8) , 1416-25, (2014)

Full Text: HTML

Abstract

The dysfunction of the proteasome system is suggested to be implicated in neuronal degeneration. Caffeoylquinic acid derivatives have demonstrated anti-oxidant and anti-inflammatory effects. However, the effect of 3,4,5-tricaffeoylquinic acid on the neuronal cell death induced by proteasome inhibition has not been studied. Therefore, in the respect of cell death process, we assessed the effect of 3,4,5-tricaffeoylquinic acid on the proteasome inhibition-induced programmed cell death using differentiated PC12 cells. The proteasome inhibitors MG132 and MG115 induced a decrease in Bid, Bcl-2, and survivin protein levels, an increase in Bax, loss of the mitochondrial transmembrane potential, cytochrome c release, activation of caspases (-8, -9 and -3), and an increase in the tumor suppressor p53 levels. Treatment with 3,4,5-tricaffeoylquinic acid attenuated the proteasome inhibitor-induced changes in the programmed cell death-related protein levels, formation of reactive oxygen species, GSH depletion and cell death. The results show that 3,4,5-tricaffeoylquinic acid may attenuate the proteasome inhibitor-induced programmed cell death in PC12 cells by suppressing the activation of the mitochondrial pathway and the caspase-8- and Bid-dependent pathways. The preventive effect of 3,4,5-tricaffeoylquinic acid appears to be attributed to its inhibitory effect on the formation of reactive oxygen species and depletion of GSH.


Related Compounds

Related Articles:

Salicylic acid signaling controls the maturation and localization of the arabidopsis defense protein ACCELERATED CELL DEATH6.

2014-08-01

[Mol. Plant 7(8) , 1365-83, (2014)]

G-protein-coupled estrogen receptor 1 is anatomically positioned to modulate synaptic plasticity in the mouse hippocampus.

2015-02-11

[J. Neurosci. 35(6) , 2384-97, (2015)]

Itraconazole suppresses the growth of glioblastoma through induction of autophagy: involvement of abnormal cholesterol trafficking.

2014-07-01

[Autophagy 10(7) , 1241-55, (2014)]

SSX2 is a novel DNA-binding protein that antagonizes polycomb group body formation and gene repression.

2015-01-01

[Nucleic Acids Res. 42(18) , 11433-46, (2014)]

Functional screening in Drosophila reveals the conserved role of REEP1 in promoting stress resistance and preventing the formation of Tau aggregates.

2014-12-20

[Hum. Mol. Genet. 23(25) , 6762-72, (2014)]

More Articles...