Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 1986-01-01

Mutagenicity of chloroolefins in the Salmonella/mammalian microsome test. III. Metabolic activation of the allylic chloropropenes allyl chloride, 1,3-dichloropropene, 2,3-dichloro-1-propene, 1,2,3-trichloropropene, 1,1,2,3-tetrachloro-2-propene and hexachloropropene by S9 mix via two different metabolic pathways.

T Neudecker, D Henschler

Index: Mutat. Res. 170(1-2) , 1-9, (1986)

Full Text: HTML

Abstract

In the presence of S9 mix all allylic chloropropenes tested exert considerable indirect mutagenic activity which is most pronounced for 1,2,3-trichloropropene. Lower as well as higher chlorinated derivatives are clearly less mutagenic. Longer than standard incubation time (120 min instead of 20 min) at 37 degrees C always leads to an increase in mutagenic activity. An increase in concentration of rat-liver homogenate fraction (S9) in the metabolising system (S9 mix) enhances mutagenicity only for 1,3-dichloropropene, 2,3-dichloro-1-propene and for the cis isomer of 1,1,2,3-tetrachloro-2-propene. According to the effects of the enzyme inhibitors SKF525 1,1,1-trichloropropene-2,3-oxide and cyanamide the allylic chloropropenes fall into 3 groups distinguished by their mode of metabolic activation by S9 mix: (a) allyl chloride and 1,3-dichloropropene are hydrolysed to the corresponding allylic alcohols which can be oxidised to the respective acroleins (hydrolytic-oxidative pathway); (b) 2,3-dichloro-1-propene, 1,1,2,3-tetrachloro-2-propene and hexachloropropene are epoxidised in the C=C double bond, giving rise to reactive epoxides (epoxidative pathway); (c) only 1,2,3-trichloropropene is obviously activated by both these alternative metabolic pathways. Structural parameters like chloro-substitution of the central C atom of the C=C-C sequence and substituent-induced polarisation of the C=C double bond as well as cis/trans isomerism might be responsible for different substrate properties for the enzymes involved in allylic chloropropene metabolism, thus determining different degrees of activation by either one or both pathways.


Related Compounds

Related Articles:

More Articles...