Intracellular Na+ overload causes oxidation of CaMKII and leads to Ca2+ mishandling in isolated ventricular myocytes.
Serge Viatchenko-Karpinski, Dmytro Kornyeyev, Nesrine El-Bizri, Grant Budas, Peidong Fan, Zhan Jiang, Jin Yang, Mark E Anderson, John C Shryock, Ching-Pin Chang, Luiz Belardinelli, Lina Yao
Index: J. Mol. Cell. Cardiol. 76 , 247-56, (2014)
Full Text: HTML
Abstract
An increase of late Na(+) current (INaL) in cardiac myocytes can raise the cytosolic Na(+) concentration and is associated with activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and alterations of mitochondrial metabolism and Ca(2+) handling by sarcoplasmic reticulum (SR). We tested the hypothesis that augmentation of INaL can increase mitochondrial reactive oxygen species (ROS) production and oxidation of CaMKII, resulting in spontaneous SR Ca(2+) release and increased diastolic Ca(2+) in myocytes. Increases of INaL and/or of the cytosolic Na(+) concentration led to mitochondrial ROS production and oxidation of CaMKII to cause dysregulation of Ca(2+) handling in rabbit cardiac myocytes. Copyright © 2014. Published by Elsevier Ltd.
Related Compounds
Related Articles:
2015-03-30
[Oncotarget 6(9) , 6811-24, (2015)]
2015-09-01
[Addict. Biol. 20 , 927-40, (2015)]
Involvement of opsins in mammalian sperm thermotaxis.
2015-01-01
[Sci. Rep. 5 , 16146, (2015)]
The role of nitric oxide synthase in an early phase Cd-induced acute cytotoxicity in MCF-7 cells.
2015-03-01
[Biol. Trace Elem. Res. 164(1) , 130-8, (2015)]
2015-01-01
[Biomed Res. Int. 2015 , 807673, (2015)]