Tissue Engineering, Part A: Tissue Engineering 2015-02-01

Dual-phase osteogenic and vasculogenic engineered tissue for bone formation.

Rameshwar R Rao, Marina L Vigen, Alexis W Peterson, David J Caldwell, Andrew J Putnam, Jan P Stegemann

Index: Tissue Eng. Part A 21(3-4) , 530-40, (2015)

Full Text: HTML

Abstract

Minimally invasive, injectable bone tissue engineering therapies offer the potential to facilitate orthopedic repair procedures, including in indications where enhanced bone regeneration is needed for complete healing. In this study, we developed a dual-phase tissue construct consisting of osteogenic (Osteo) and vasculogenic (Vasculo) components. A modular tissue engineering approach was used to create collagen/fibrin/hydroxyapatite (COL/FIB/HA) hydrogel microbeads containing embedded human bone marrow-derived mesenchymal stem cells (bmMSC). These microbeads were predifferentiated toward the osteogenic lineage in vitro for 14 days, and they were then embedded within a COL/FIB vasculogenic phase containing a coculture of undifferentiated bmMSC and human umbilical vein endothelial cells (HUVEC). In vitro studies demonstrated homogenous dispersion of microbeads within the outer phase, with endothelial network formation around the microbeads over 14 days in the coculture conditions. Subcutaneous injection into immunodeficient mice was used to investigate the ability of dual-phase (Osteo+Vasculo) and control (Osteo, Vasculo, Blank) constructs to form neovasculature and ectopic bone. Laser Doppler imaging demonstrated blood perfusion through all constructs at 1, 4, and 8 weeks postimplantation. Histological quantification of total vessel density showed no significant differences between the conditions. Microcomputed tomography indicated significantly higher ectopic bone volume (BV) in the Osteo condition at 4 weeks. At 8 weeks both the Osteo and Blank groups exhibited higher BV compared to the Vasculo and dual Osteo+Vasculo groups. These data not only show that osteogenic microbeads can be used to induce ectopic bone formation, but also suggest an inhibitory effect on BV when undifferentiated bmMSC and HUVEC were included in dual-phase constructs. This work may lead to improved methods for engineering vascularized bone tissue, and to injectable therapies for the treatment of orthopedic pathologies in which bone regeneration is delayed or prevented.


Related Compounds

Related Articles:

A novel pathway producing dimethylsulphide in bacteria is widespread in soil environments.

2015-01-01

[Nat. Commun. 6 , 6579, (2015)]

Microfluidics-based in situ padlock/rolling circle amplification system for counting single DNA molecules in a cell.

2014-01-01

[Anal. Sci. 30(12) , 1107-12, (2014)]

Combined effects of drying methods, extract concentration, and film thickness on efficacy of antimicrobial chitosan films.

2014-06-01

[J. Food Sci. 79(6) , E1150-8, (2014)]

A salting out system for improving the efficiency of the headspace solid-phase microextraction of short and medium chain free fatty acids.

2015-08-28

[J. Chromatogr. A. 1409 , 282-7, (2015)]

Olfactometry Profiles and Quantitation of Volatile Sulfur Compounds of Swiss Tilsit Cheeses.

2015-09-02

[J. Agric. Food Chem. 63 , 7511-21, (2015)]

More Articles...