Analytical Sciences 2014-01-01

Microfluidics-based in situ padlock/rolling circle amplification system for counting single DNA molecules in a cell.

Arisa Kuroda, Yuri Ishigaki, Mats Nilsson, Kiichi Sato, Kae Sato

Index: Anal. Sci. 30(12) , 1107-12, (2014)

Full Text: HTML

Abstract

In situ padlock/rolling circle amplification (RCA) is a method used to amplify, visualize, and quantify target DNA molecules in cells. However, the multiple reaction steps involved make this technique costly and cumbersome. We developed a novel, simplified, automated microfluidic system for RCA, and demonstrated its effectiveness by counting amplified mitochondrial DNA fragments in HeLa cells. After optimizing the volume of the reaction solutions and washing buffer composition, the product yield was equal to that obtained by the conventional manual method. The required volume of reagents was reduced to 10 μL, which is less than half the volume used in the conventional method. To the best of our knowledge, this is the first report of an automated microfluidic method for in situ padlock/RCA, which can be useful for making highly efficient pathological diagnoses.


Related Compounds

Related Articles:

Salicylic acid signaling controls the maturation and localization of the arabidopsis defense protein ACCELERATED CELL DEATH6.

2014-08-01

[Mol. Plant 7(8) , 1365-83, (2014)]

Transcriptional regulation of Munc13-4 expression in cytotoxic lymphocytes is disrupted by an intronic mutation associated with a primary immunodeficiency.

2014-06-02

[J. Exp. Med. 211(6) , 1079-91, (2014)]

Irisin stimulates muscle growth-related genes and regulates adipocyte differentiation and metabolism in humans.

2012-07-01

[Int. J. Obes. 38(12) , 1538-44, (2014)]

Epigenetic reprogramming of the type III interferon response potentiates antiviral activity and suppresses tumor growth.

2014-01-01

[PLoS Biol. 12(1) , e1001758, (2014)]

Mechanism of human PTEN localization revealed by heterologous expression in Dictyostelium.

2014-12-11

[Oncogene 33(50) , 5688-96, (2014)]

More Articles...