Biophysical Journal 2015-05-05

Viscoelastic transient of confined red blood cells.

Gaël Prado, Alexander Farutin, Chaouqi Misbah, Lionel Bureau

Index: Biophys. J. 108 , 2126-36, (2015)

Full Text: HTML

Abstract

The unique ability of a red blood cell to flow through extremely small microcapillaries depends on the viscoelastic properties of its membrane. Here, we study in vitro the response time upon flow startup exhibited by red blood cells confined into microchannels. We show that the characteristic transient time depends on the imposed flow strength, and that such a dependence gives access to both the effective viscosity and the elastic modulus controlling the temporal response of red cells. A simple theoretical analysis of our experimental data, validated by numerical simulations, further allows us to compute an estimate for the two-dimensional membrane viscosity of red blood cells, η(mem)(2D) ∼ 10(-7) N ⋅ s ⋅ m(-1). By comparing our results with those from previous studies, we discuss and clarify the origin of the discrepancies found in the literature regarding the determination of η(mem)(2D), and reconcile seemingly conflicting conclusions from previous works.Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.


Related Compounds

Related Articles:

A novel pathway producing dimethylsulphide in bacteria is widespread in soil environments.

2015-01-01

[Nat. Commun. 6 , 6579, (2015)]

Microfluidics-based in situ padlock/rolling circle amplification system for counting single DNA molecules in a cell.

2014-01-01

[Anal. Sci. 30(12) , 1107-12, (2014)]

Combined effects of drying methods, extract concentration, and film thickness on efficacy of antimicrobial chitosan films.

2014-06-01

[J. Food Sci. 79(6) , E1150-8, (2014)]

A salting out system for improving the efficiency of the headspace solid-phase microextraction of short and medium chain free fatty acids.

2015-08-28

[J. Chromatogr. A. 1409 , 282-7, (2015)]

Olfactometry Profiles and Quantitation of Volatile Sulfur Compounds of Swiss Tilsit Cheeses.

2015-09-02

[J. Agric. Food Chem. 63 , 7511-21, (2015)]

More Articles...