Applied and Environmental Microbiology 2012-09-01

MhbT is a specific transporter for 3-hydroxybenzoate uptake by Gram-negative bacteria.

Ying Xu, Xiaoli Gao, Song-He Wang, Hong Liu, Peter A Williams, Ning-Yi Zhou

Index: Appl. Environ. Microbiol. 78(17) , 6113-20, (2012)

Full Text: HTML

Abstract

Klebsiella pneumoniae M5a1 is capable of utilizing 3-hydroxybenzoate via gentisate, and the 6.3-kb gene cluster mhbRTDHIM conferred the ability to grow on 3-hydroxybenzoate to Escherichia coli and Pseudomonas putida PaW340. Four of the six genes (mhbDHIM) encode enzymes converting 3-hydroxybenzoate to pyruvate and fumarate via gentisate. MhbR is a gene activator, and MhbT is a hypothetical protein belonging to the transporter of the aromatic acid/H(+) symporter family. Since a transporter for 3-hydrxybenzoate uptake has not been characterized to date, we investigated whether MhbT is responsible for the uptake of 3-hydroxybenzoate, its metabolic intermediate gentisate, or both. The MhbT-green fluorescent protein (GFP) fusion protein was located on the cytoplasmic membrane. P. putida PaW340 containing mhbRΔTDHIM could not grow on 3-hydroxybenzoate; however, supplying mhbT in trans allowed the bacterium to grow on the substrate. K. pneumoniae M5a1 and P. putida PaW340 containing recombinant MhbT transported (14)C-labeled 3-hydroxybenzoate but not (14)C-labeled gentisate and benzoate into the cells. Site-directed mutagenesis of two conserved amino acid residues (Asp-82 and Asp-314) and a less-conserved residue (Val-311) among the members of the symporter family in the hydrophilic cytoplasmic loops resulted in the loss of 3-hydroxybenzoate uptake by P. putida PaW340 carrying the mutant proteins. Hence, we demonstrated that MhbT is a specific 3-hydroxybenzoate transporter.


Related Compounds

Related Articles:

Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase.

2015-01-01

[Nat. Commun. 6 , 5961, (2015)]

Antimicrobial activity of natural products from the flora of Northern Ontario, Canada.

2015-06-01

[Pharm. Biol. 53(6) , 800-6, (2015)]

Comparison of Mannose, Ethylene Glycol, and Methoxy-Terminated Diluents on Specificity and Selectivity of Electrochemical Peptide-Based Sensors.

2015-07-07

[Anal. Chem. 87 , 6966-73, (2015)]

Design and Evaluation of Tumor-Specific Dendrimer Epigenetic Therapeutics.

2015-06-01

[ChemistryOpen 4 , 335-41, (2015)]

Proteomics profiling of ethylene-induced tomato flower pedicel abscission.

2015-05-21

[J. Proteomics 121 , 67-87, (2015)]

More Articles...