The unique serine/threonine phosphatase from the minimal bacterium Mycoplasma synoviae: biochemical characterization and metal dependence.
Angela C O Menegatti, Javier Vernal, Hernán Terenzi
Index: J. Biol. Inorg. Chem. 20(1) , 61-75, (2015)
Full Text: HTML
Abstract
Serine/threonine protein phosphatases have been described in many pathogenic bacteria as essential enzymes involved in phosphorylation-dependent signal transduction pathways and frequently associated with the virulence of these organisms. An inspection of Mycoplasma synoviae genome revealed the presence of a gene (prpC) encoding a putative protein phosphatase of the protein phosphatase 2C (PP2C) subfamily. Here, we report a complete biochemical characterization of M. synoviae phosphatase (PrpC) and the particular role of metal ions in the structure-function relationship of this enzyme. PrpC amino acid sequence analysis revealed that all the residues involved in the dinuclear metal center and the putative third metal ion-coordinating residues, conserved in PP2C phosphatases, are present in PrpC. PrpC is a monomeric protein able to dephosphorylate phospho-substrates with Mn(2+) ions' dependence. Thermal stability analysis demonstrated the enzyme stability at mild temperatures and the influence of Mn(2+) ions in this property. Mass spectrometry analysis suggested that three metal ions bind to PrpC, two of which with an apparent high-affinity constant. Mutational analysis of the putative third metal-coordinating residues, Asp122 and Arg164, revealed that these variants exhibited a weaker binding of manganese ions, and that both mutations affected PrpC phosphatase activity. According to these results, PrpC is a metal-dependent protein phosphatase member with an improved stability in the holo form and with Asp122, possibly implicated in the third metal-binding site, essential to catalytic activity.
Related Compounds
Related Articles:
2014-08-01
[Mol. Plant 7(8) , 1365-83, (2014)]
2014-06-02
[J. Exp. Med. 211(6) , 1079-91, (2014)]
2012-07-01
[Int. J. Obes. 38(12) , 1538-44, (2014)]
2014-01-01
[PLoS Biol. 12(1) , e1001758, (2014)]
Mechanism of human PTEN localization revealed by heterologous expression in Dictyostelium.
2014-12-11
[Oncogene 33(50) , 5688-96, (2014)]