Nature Chemical Biology 2008-05-01

Novel targets for Huntington's disease in an mTOR-independent autophagy pathway.

Andrea Williams, Sovan Sarkar, Paul Cuddon, Evangelia K Ttofi, Shinji Saiki, Farah H Siddiqi, Luca Jahreiss, Angeleen Fleming, Dean Pask, Paul Goldsmith, Cahir J O'Kane, Rodrigo Andres Floto, David C Rubinsztein

Index: Nat. Chem. Biol. 4 , 295-305, (2008)

Full Text: HTML

Abstract

Autophagy is a major clearance route for intracellular aggregate-prone proteins causing diseases such as Huntington's disease. Autophagy induction with the mTOR inhibitor rapamycin accelerates clearance of these toxic substrates. As rapamycin has nontrivial side effects, we screened FDA-approved drugs to identify new autophagy-inducing pathways. We found that L-type Ca2+ channel antagonists, the K+ATP channel opener minoxidil, and the G(i) signaling activator clonidine induce autophagy. These drugs revealed a cyclical mTOR-independent pathway regulating autophagy, in which cAMP regulates IP3 levels, influencing calpain activity, which completes the cycle by cleaving and activating G(s)alpha, which regulates cAMP levels. This pathway has numerous potential points where autophagy can be induced, and we provide proof of principle for therapeutic relevance in Huntington's disease using mammalian cell, fly and zebrafish models. Our data also suggest that insults that elevate intracytosolic Ca2+ (like excitotoxicity) inhibit autophagy, thus retarding clearance of aggregate-prone proteins.

Related Compounds

Structure Name/CAS No. Articles
Forskolin Structure Forskolin
CAS:66575-29-9
Nitrendipine Structure Nitrendipine
CAS:39562-70-4
Thapsigargin Structure Thapsigargin
CAS:67526-95-8
Valproic acid Structure Valproic acid
CAS:99-66-1
ALLM Structure ALLM
CAS:136632-32-1