Stem Cell Research & Therapy 2015-01-01

Susceptibility of murine induced pluripotent stem cell-derived cardiomyocytes to hypoxia and nutrient deprivation.

Andreja Brodarac, Tomo Šarić, Barbara Oberwallner, Shokoufeh Mahmoodzadeh, Klaus Neef, Julie Albrecht, Karsten Burkert, Matteo Oliverio, Filomain Nguemo, Yeong-Hoon Choi, Wolfram F Neiss, Ingo Morano, Jürgen Hescheler, Christof Stamm

Index: Stem Cell Res. Ther. 6 , 83, (2015)

Full Text: HTML

Abstract

Induced pluripotent stem cell-derived cardiomyocytes (iPS-CMs) may be suitable for myocardial repair. While their functional and structural properties have been extensively investigated, their response to ischemia-like conditions has not yet been clearly defined.iPS-CMs were differentiated and enriched from murine induced pluripotent stem cells expressing enhanced green fluorescent protein (eGFP) and puromycin resistance genes under the control of an α-myosin heavy chain (α-MHC) promoter. iPS-CMs maturity and function were characterized by microscopy, real-time PCR, calcium transient recordings, electrophysiology, and mitochondrial function assays, and compared to those from neonatal murine cardiomyocytes. iPS-CMs as well as neonatal murine cardiomyocytes were exposed for 3 hours to hypoxia (1% O2) and glucose/serum deprivation, and viability, apoptosis markers, reactive oxygen species, mitochondrial membrane potential and intracellular stress signaling cascades were investigated. Then, the iPS-CMs response to mesenchymal stromal cell-conditioned medium was determined.iPS-CMs displayed key morphological and functional properties that were comparable to those of neonatal cardiomyocytes, but several parameters indicated an earlier iPS-CMs maturation stage. During hypoxia and glucose/serum deprivation, iPS-CMs exhibited a significantly higher proportion of poly-caspase-active, 7-aminoactinomycin D-positive and TUNEL-positive cells than neonatal cardiomyocytes. The average mitochondrial membrane potential was reduced in "ischemic" iPS-CMs but remained unchanged in neonatal cardiomyocytes; reactive oxygen species production was only increased in "ischemic" iPS-CMs, and oxidoreductase activity in iPS-CMs dropped more rapidly than in neonatal cardiomyocytes. In iPS-CMs, hypoxia and glucose/serum deprivation led to upregulation of Hsp70 transcripts and decreased STAT3 phosphorylation and total PKCε protein expression. Treatment with mesenchymal stromal cell-conditioned medium preserved oxidoreductase activity and restored pSTAT3 and PKCε levels.iPS-CMs appear to be particularly sensitive to hypoxia and nutrient deprivation. Counteracting the ischemic susceptibility of iPS-CMs with mesenchymal stromal cell-conditioned medium may help enhance their survival and efficacy in cell-based approaches for myocardial repair.

Related Compounds

Structure Name/CAS No. Articles
Sodium hydroxide Structure Sodium hydroxide
CAS:1310-73-2
sodium chloride Structure sodium chloride
CAS:7647-14-5
Acetone Structure Acetone
CAS:67-64-1
sodium dodecyl sulfate Structure sodium dodecyl sulfate
CAS:151-21-3
Ascorbic acid Structure Ascorbic acid
CAS:50-81-7
Fura-2, AM Structure Fura-2, AM
CAS:108964-32-5
Calcium chloride Structure Calcium chloride
CAS:10043-52-4
3-Ethyl-2,4-pentanedione Structure 3-Ethyl-2,4-pentanedione
CAS:1540-34-7
Osmium tetroxide Structure Osmium tetroxide
CAS:20816-12-0
HEPES Structure HEPES
CAS:7365-45-9