Clinical Cancer Research 2014-12-15

Systemic delivery of microencapsulated 3-bromopyruvate for the therapy of pancreatic cancer.

Julius Chapiro, Surojit Sur, Lynn Jeanette Savic, Shanmugasundaram Ganapathy-Kanniappan, Juvenal Reyes, Rafael Duran, Sivarajan Chettiar Thiruganasambandam, Cassandra Rae Moats, MingDe Lin, Weibo Luo, Phuoc T Tran, Joseph M Herman, Gregg L Semenza, Andrew J Ewald, Bert Vogelstein, Jean-François Geschwind

Index: Clin. Cancer Res. 20(24) , 6406-17, (2014)

Full Text: HTML

Abstract

This study characterized the therapeutic efficacy of a systemically administered formulation of 3-bromopyruvate (3-BrPA), microencapsulated in a complex with β-cyclodextrin (β-CD), using an orthotopic xenograft mouse model of pancreatic ductal adenocarcinoma (PDAC).The presence of the β-CD-3-BrPA complex was confirmed using nuclear magnetic resonance spectroscopy. Monolayer as well as three-dimensional organotypic cell culture was used to determine the half-maximal inhibitory concentrations (IC50) of β-CD-3-BrPA, free 3-BrPA, β-CD (control), and gemcitabine in MiaPaCa-2 and Suit-2 cell lines, both in normoxia and hypoxia. Phase-contrast microscopy, bioluminescence imaging (BLI), as well as zymography and Matrigel assays were used to characterize the effects of the drug in vitro. An orthotopic lucMiaPaCa-2 xenograft tumor model was used to investigate the in vivo efficacy.β-CD-3-BrPA and free 3-BrPA demonstrated an almost identical IC50 profile in both PDAC cell lines with higher sensitivity in hypoxia. Using the Matrigel invasion assay as well as zymography, 3-BrPA showed anti-invasive effects in sublethal drug concentrations. In vivo, animals treated with β-CD-3-BrPA demonstrated minimal or no tumor progression as evident by the BLI signal as opposed to animals treated with gemcitabine or the β-CD (60-fold and 140-fold signal increase, respectively). In contrast to animals treated with free 3-BrPA, no lethal toxicity was observed for β-CD-3-BrPA.The microencapsulation of 3-BrPA represents a promising step towards achieving the goal of systemically deliverable antiglycolytic tumor therapy. The strong anticancer effects of β-CD-3-BrPA combined with its favorable toxicity profile suggest that clinical trials, particularly in patients with PDAC, should be considered.©2014 American Association for Cancer Research.

Related Compounds

Structure Name/CAS No. Articles
Sodium hydroxide Structure Sodium hydroxide
CAS:1310-73-2
Potassium Structure Potassium
CAS:7440-09-7
3-Ethyl-2,4-pentanedione Structure 3-Ethyl-2,4-pentanedione
CAS:1540-34-7
potassium hydride Structure potassium hydride
CAS:7693-26-7
D-Luciferin Structure D-Luciferin
CAS:2591-17-5
Gemcitabine HCl Structure Gemcitabine HCl
CAS:122111-03-9
4',6-Diamidino-2-phenylindole dihydrochloride Structure 4',6-Diamidino-2-phenylindole dihydrochloride
CAS:28718-90-3