PNAS 2015-05-12

CDK1 substitutes for mTOR kinase to activate mitotic cap-dependent protein translation.

Masahiro Shuda, Celestino Velásquez, Erdong Cheng, Daniel G Cordek, Hyun Jin Kwun, Yuan Chang, Patrick S Moore

Index: Proc. Natl. Acad. Sci. U. S. A. 112 , 5875-82, (2015)

Full Text: HTML

Abstract

Mitosis is commonly thought to be associated with reduced cap-dependent protein translation. Here we show an alternative control mechanism for maintaining cap-dependent translation during mitosis revealed by a viral oncoprotein, Merkel cell polyomavirus small T (MCV sT). We find MCV sT to be a promiscuous E3 ligase inhibitor targeting the anaphase-promoting complex, which increases cell mitogenesis. MCV sT binds through its Large T stabilization domain region to cell division cycle protein 20 (Cdc20) and, possibly, cdc20 homolog 1 (Cdh1) E3 ligase adapters. This activates cyclin-dependent kinase 1/cyclin B1 (CDK1/CYCB1) to directly hyperphosphorylate eukaryotic initiation factor 4E (eIF4E)-binding protein (4E-BP1) at authentic sites, generating a mitosis-specific, mechanistic target of rapamycin (mTOR) inhibitor-resistant δ phospho-isoform not present in G1-arrested cells. Recombinant 4E-BP1 inhibits capped mRNA reticulocyte translation, which is partially reversed by CDK1/CYCB1 phosphorylation of 4E-BP1. eIF4G binding to the eIF4E-m(7)GTP cap complex is resistant to mTOR inhibition during mitosis but sensitive during interphase. Flow cytometry, with and without sT, reveals an orthogonal pH3(S10+) mitotic cell population having higher inactive p4E-BP1(T37/T46+) saturation levels than pH3(S10-) interphase cells. Using a Click-iT flow cytometric assay to directly measure mitotic protein synthesis, we find that most new protein synthesis during mitosis is cap-dependent, a result confirmed using the eIF4E/4G inhibitor drug 4E1RCat. For most cell lines tested, cap-dependent translation levels were generally similar between mitotic and interphase cells, and the majority of new mitotic protein synthesis was cap-dependent. These findings suggest that mitotic cap-dependent translation is generally sustained during mitosis by CDK1 phosphorylation of 4E-BP1 even under conditions of reduced mTOR signaling.

Related Compounds

Structure Name/CAS No. Articles
Sodium Fluoride Structure Sodium Fluoride
CAS:7681-49-4
sodium chloride Structure sodium chloride
CAS:7647-14-5
sodium dodecyl sulfate Structure sodium dodecyl sulfate
CAS:151-21-3
Dimethyl sulfoxide Structure Dimethyl sulfoxide
CAS:67-68-5
SODIUM CHLORIDE-35 CL Structure SODIUM CHLORIDE-35 CL
CAS:20510-55-8
RO-3306 Structure RO-3306
CAS:872573-93-8
DL-Methionine Structure DL-Methionine
CAS:59-51-8
Acetohydroxamic acid Structure Acetohydroxamic acid
CAS:546-88-3
8-Octanoyloxypyrene-1,3,6-trisulfonic acid trisodium salt Structure 8-Octanoyloxypyrene-1,3,6-trisulfonic acid trisodium salt
CAS:115787-84-3