前往化源商城

Analytical chemistry 2006-04-01

Evaluation of flow cell detector configurations combining simultaneous preconcentration and scintillation detection for monitoring of pertechnetate in aqueous media.

Lara D Hughes, Timothy A DeVol

文献索引:Anal. Chem. 78 , 2254, (2006)

全文:HTML全文

摘要

Flow cell detectors were developed for simultaneous concentration and scintillation detection of technetium-99 in water. Evaluated flow cell geometries consisted of a coil and a fountain flow cell design; the latter is based on radial solution flow through a resin bed interfaced with a photomultiplier tube through a polycarbonate window. The sorptive scintillating media investigated were (1) an extractive scintillator combining a porous polystyrene resin with the extractant Aliquat-336 and fluor 2-(1-naphthyl)-5-phenyloxazole, (2) a mixed bed of organic scintillator (BC-400) and Tc-selective resin (TEVA), and (3) a mixed bed of inorganic scintillator particles (CaF2-Eu) with either TEVA resin or strong base anion-exchange resin (Dowex 1 x 8-400(Cl)). Depending on flow cell geometry and medium, the detection efficiencies for 99Tc ranged from 7.26 (BC-400/TEVA in coil geometry) to 50.20% (CaF2(Eu)/Dowex 1 x 8-400(Cl) in fountain flow cell geometry). The configuration with the highest sensitivity, CaF2(Eu)/Dowex 1 x 8-400(Cl) in coil geometry, can detect 99Tc as low as 3.78 Bq L(-1) for a 100-s count interval and a 200-mL sample, which is below the current regulatory level of 33 Bq L(-1). The issue of sensor reusability was addressed in this research, and its potential application at near neutral pH was demonstrated. The optimal sensor design was evaluated with a 99Tc-spiked synthetic groundwater matrix.

相关化合物

结构式 名称/CAS号 全部文献
1,4-双(2-甲基苯乙烯基)苯 结构式 1,4-双(2-甲基苯乙烯基)苯
CAS:13280-61-0