前往化源商城

Journal of Food Science 2012-09-01

Sensory characteristics and relative sweetness of tagatose and other sweeteners.

Tomomi Fujimaru, Jin-Hee Park, Juyun Lim

文献索引:J. Food Sci. 77(9) , S323-8, (2012)

全文:HTML全文

摘要

The present study investigated the sensory characteristics and relative sweetness of tagatose, an emerging natural low-calorie sweetener with various functional properties, compared to other sweeteners (sucrose, sucralose, erythritol, rebaudioside A), over a wide range of sweetness commonly found in foods and beverages (3% to 20% sucrose [w/v]). A total of 34 subjects evaluated aqueous solutions of the 5 sweeteners for the perceived intensities of sweetness, bitterness, astringency, chemical-like sensations, and sweet aftertaste, using the general version of the Labeled Magnitude Scale. The relationship between the physical concentrations of the sweeteners and their perceived sweetness (that is, psychophysical functions) was derived to quantify the relative sweetness and potency of the sweeteners. The results suggest that tagatose elicits a sweet taste without undesirable qualities (bitterness, astringency, chemical-like sensations). Out of the 5 sweeteners tested, rebaudioside A was the only sweetener with notable bitterness and chemical-like sensations, which became progressively intense with increasing concentration (P < 0.001). In terms of perceived sweetness intensity, the bulk sweeteners (tagatose, erythritol, sucrose) had similar sweetness growth rates (slopes > 1), whereas the high-potency sweeteners (sucralose, rebaudioside A) yielded much flatter sweetness functions (slopes < 1). Because the sweetness of tagatose and sucrose grew at near-identical rates (slope = 1.41 and 1.40, respectively), tagatose produced about the same relative sweetness to sucrose across the concentrations tested. However, the relative sweetness of other sweeteners to sucrose was highly concentration dependent. Consequently, sweetness potencies of other sweeteners varied across the concentrations tested, ranging from 0.50 to 0.78 for erythritol, 220 to 1900 for sucralose, and 300 to 440 for rebaudioside A, while tagatose was estimated to be approximately 0.90 times as potent as sucrose irrespective of concentration.The present study investigated the sensory characteristics and relative sweetness of tagatose, an emerging natural low-calorie sweetener, compared to other sweeteners. Study results suggest that tagatose elicits a sweet taste without undesirable qualities over a wide range of concentrations. Tagatose produced about the same relative sweetness to sucrose across the concentrations tested, while the relative sweetness of other sweeteners was highly concentration dependent. The present data provide a general guideline when considering the use of tagatose and other sweeteners in foods and beverages.© 2012 Institute of Food Technologists®

相关化合物

结构式 名称/CAS号 全部文献
甜菊双糖苷A 结构式 甜菊双糖苷A
CAS:58543-16-1
三氯蔗糖 结构式 三氯蔗糖
CAS:56038-13-2
D-塔格糖 结构式 D-塔格糖
CAS:87-81-0
赤藓糖醇 结构式 赤藓糖醇
CAS:149-32-6