前往化源商城

Epilepsia 2013-04-01

Glyoxalase 1 and its substrate methylglyoxal are novel regulators of seizure susceptibility.

Margaret G Distler, Naomi Gorfinkle, Ligia A Papale, Gerald E Wuenschell, John Termini, Andrew Escayg, Melodie R Winawer, Abraham A Palmer

文献索引:Epilepsia 54(4) , 649-57, (2013)

全文:HTML全文

摘要

Epilepsy is a complex disease characterized by a predisposition toward seizures. There are numerous barriers to the successful treatment of epilepsy. For instance, current antiepileptic drugs have adverse side effects and variable efficacies. Furthermore, the pathophysiologic basis of epilepsy remains largely elusive. Therefore, investigating novel genes and biologic processes underlying epilepsy may provide valuable insight and enable the development of new therapeutic agents. We previously identified methylglyoxal (MG) as an endogenous γ-aminobutyric acid (GABAA ) receptor agonist. Here, we investigated the role of MG and its catabolic enzyme, glyoxalase 1 (GLO1), in seizures.We pretreated mice with MG before seizure induction with picrotoxin or pilocarpine and then assessed seizures behaviorally or by electroencephalography (EEG). We then investigated the role of GLO1 in seizures by treating mice with a pharmacologic inhibitor of GLO1 before seizure induction with pilocarpine and measured subsequent seizure phenotypes. Next, we explored the genetic relationship between Glo1 expression and seizures. We analyzed seizure phenotypes among C57BL/6J × DBA/2J (BXD) recombinant inbred (RI) mice with differential Glo1 expression. Lastly, we investigated a causal role for Glo1 in seizures by administering pilocarpine to transgenic (Tg) mice that overexpress Glo1.Pretreatment with MG attenuated pharmacologically-induced seizures at both the behavioral and EEG levels. GLO1 inhibition, which increases MG concentration in vivo, also attenuated seizures. Among BXD RI mice, high Glo1 expression was correlated with increased seizure susceptibility. Tg mice overexpressing Glo1 displayed reduced MG concentration in the brain and increased seizure severity.These data identify MG as an endogenous regulator of seizures. Similarly, inhibition of GLO1 attenuates seizures, suggesting that this may be a novel therapeutic approach for epilepsy. Furthermore, this system may represent an endogenous negative feedback loop whereby high metabolic activity increases inhibitory tone via local accumulation of MG. Finally, Glo1 may contribute to the genetic architecture of epilepsy, as Glo1 expression regulates both MG concentration and seizure severity.Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.

相关化合物

结构式 名称/CAS号 全部文献
丙酮醛 结构式 丙酮醛
CAS:78-98-8
硝酸毛果芸香碱 结构式 硝酸毛果芸香碱
CAS:148-72-1
盐酸毛果芸香碱 结构式 盐酸毛果芸香碱
CAS:54-71-7
乙二醛酶I 结构式 乙二醛酶I
CAS:9033-12-9
木防己苦毒素 结构式 木防己苦毒素
CAS:124-87-8