前往化源商城

Journal of Biomedical Materials Research, Part A 2014-08-01

Synthesis and characterization of biomimetic citrate-based biodegradable composites.

Richard T Tran, Liang Wang, Chang Zhang, Minjun Huang, Wanjin Tang, Chi Zhang, Zhongmin Zhang, Dadi Jin, Brittany Banik, Justin L Brown, Zhiwei Xie, Xiaochun Bai, Jian Yang

文献索引:J. Biomed. Mater. Res. A 102(8) , 2521-32, (2014)

全文:HTML全文

摘要

Natural bone apatite crystals, which mediate the development and regulate the load-bearing function of bone, have recently been associated with strongly bound citrate molecules. However, such understanding has not been translated into bone biomaterial design and osteoblast cell culture. In this work, we have developed a new class of biodegradable, mechanically strong, and biocompatible citrate-based polymer blends (CBPBs), which offer enhanced hydroxyapatite binding to produce more biomimetic composites (CBPBHAs) for orthopedic applications. CBPBHAs consist of the newly developed osteoconductive citrate-presenting biodegradable polymers, crosslinked urethane-doped polyester and poly (octanediol citrate), which can be composited with up to 65 wt % hydroxyapatite. CBPBHA networks produced materials with a compressive strength of 116.23 ± 5.37 MPa comparable to human cortical bone (100-230 MPa), and increased C2C12 osterix gene and alkaline phosphatase gene expression in vitro. The promising results above prompted an investigation on the role of citrate supplementation in culture medium for osteoblast culture, which showed that exogenous citrate supplemented into media accelerated the in vitro phenotype progression of MG-63 osteoblasts. After 6 weeks of implantation in a rabbit lateral femoral condyle defect model, CBPBHA composites elicited minimal fibrous tissue encapsulation and were well integrated with the surrounding bone tissues. The development of citrate-presenting CBPBHA biomaterials and preliminary studies revealing the effects of free exogenous citrate on osteoblast culture shows the potential of citrate biomaterials to bridge the gap in orthopedic biomaterial design and osteoblast cell culture in that the role of citrate molecules has previously been overlooked.© 2013 Wiley Periodicals, Inc.

相关化合物

结构式 名称/CAS号 全部文献
4-硝基苯磷酸盐 二钠盐 六水合物(PNPP) 结构式 4-硝基苯磷酸盐 二钠盐 六水合物(PNPP)
CAS:333338-18-4
柠檬酸 结构式 柠檬酸
CAS:77-92-9
羟基磷灰石 结构式 羟基磷灰石
CAS:1306-06-5
磷酸钙 结构式 磷酸钙
CAS:12167-74-7
丁卡因碱 结构式 丁卡因碱
CAS:5094-24-6
1,8-辛二醇 结构式 1,8-辛二醇
CAS:629-41-4