前往化源商城

Nanotechnology 2009-05-20

Kinetic limitations of the Mg(2)Si system for reversible hydrogen storage.

Stephen T Kelly, Sky L Van Atta, John J Vajo, Gregory L Olson, B M Clemens

文献索引:Nanotechnology 20(20) , 204017, (2009)

全文:HTML全文

摘要

Despite the promising thermodynamics and storage capacities of many destabilized metal hydride hydrogen storage material systems, they are often kinetically limited from achieving practical and reversible behavior. Such is the case with the Mg2Si system. We investigated the kinetic mechanisms responsible for limiting the reversibility of the MgH2+Si system using thin films as a controlled research platform. We observed that the reaction MgH2 + 1/2Mg2Si + H2 is limited by the mass transport of Mg and Si into separate phases. Hydrogen readily diffuses through the Mg2Si material and nucleating MgH2 phase growth does not result in reaction completion. By depositing and characterizing multilayer films of Mg2Si and Mg with varying Mg2Si layer thicknesses, we conclude that the hydrogenation reaction consumes no more than 1 nm of Mg2Si, making this system impractical for reversible hydrogen storage.

相关化合物

结构式 名称/CAS号 全部文献
氟罗里硅土 结构式 氟罗里硅土
CAS:1343-88-0