前往化源商城

Bioresource Technology 2015-09-01

Degradation of slime extracellular polymeric substances and inhibited sludge flocs destruction contribute to sludge dewaterability enhancement during fungal treatment of sludge using filamentous fungus Mucor sp. GY-1.

Zhenyu Wang, Guanyu Zheng, Lixiang Zhou

文献索引:Bioresour. Technol. 192 , 514-21, (2015)

全文:HTML全文

摘要

Mechanisms responsible for the sludge dewaterability enhanced by filamentous fungi during fungal treatment of sludge were investigated in the present study. The filamentous fungus Mucor sp. GY-1, isolated from waste activated sludge, enhanced sludge dewaterability by 82.1% to achieve the lowest value of normalized sludge specific resistance to filtration (SRF), 8.18 × 10(10) m · L/kg · g-TSS. During the fungal treatment of sludge, 57.8% of slime extracellular polymeric substances (EPS) and 51.1% of polysaccharide in slime EPS were degraded, respectively, by Mucor sp. GY-1, contributing to the improvement of sludge dewaterability. Slime EPS is much more available for Mucor sp. GY-1 than either LB-EPS or TB-EPS that bound with microbial cells. In addition, filamentous fungus Mucor sp. GY-1 entrapped small sludge particles and inhibited the destruction of sludge flocs larger than 100 μm, thus enhancing sludge dewaterability, during fungal treatment of sludge using Mucor sp. GY-1.Copyright © 2015 Elsevier Ltd. All rights reserved.

相关化合物

结构式 名称/CAS号 全部文献
乙醇 结构式 乙醇
CAS:64-17-5
二苯胺 结构式 二苯胺
CAS:122-39-4
戊二醛 结构式 戊二醛
CAS:111-30-8