前往化源商城

Tissue Engineering, Part A: Tissue Engineering 2015-03-01

Enhanced regeneration of corneal tissue via a bioengineered collagen construct implanted by a nondisruptive surgical technique.

Marina Koulikovska, Mehrdad Rafat, Goran Petrovski, Zoltán Veréb, Saeed Akhtar, Per Fagerholm, Neil Lagali

文献索引:Tissue Eng. Part A 21(5-6) , 1116-30, (2015)

全文:HTML全文

摘要

Severe shortage of donor corneas for transplantation, particularly in developing countries, has prompted the advancement of bioengineered tissue alternatives. Bioengineered corneas that can withstand transplantation while maintaining transparency and compatibility with host cells, and that are additionally amenable to standardized low-cost mass production are sought. In this study, a bioengineered porcine construct (BPC) was developed to function as a biodegradable scaffold to promote corneal stromal regeneration by host cells. Using high-purity medical-grade type I collagen, high 18% collagen content and optimized EDC-NHS cross-linker ratio, BPCs were fabricated into hydrogel corneal implants with over 90% transparency and four-fold increase in strength and stiffness compared with previous versions. Remarkably, optical transparency was achieved despite the absence of collagen fibril organization at the nanoscale. In vitro testing indicated that BPC supported confluent human epithelial and stromal-derived mesenchymal stem cell populations. With a novel femtosecond laser-assisted corneal surgical model in rabbits, cell-free BPCs were implanted in vivo in the corneal stroma of 10 rabbits over an 8-week period. In vivo, transparency of implanted corneas was maintained throughout the postoperative period, while healing occurred rapidly without inflammation and without the use of postoperative steroids. BPC implants had a 100% retention rate at 8 weeks, when host stromal cells began to migrate into implants. Direct histochemical evidence of stromal tissue regeneration was observed by means of migrated host cells producing new collagen from within the implants. This study indicates that a cost-effective BPC extracellular matrix equivalent can incorporate cells passively to initiate regenerative healing of the corneal stroma, and is compatible with human stem or organ-specific cells for future therapeutic applications as a stromal replacement for treating blinding disorders of the cornea.

相关化合物

结构式 名称/CAS号 全部文献
丙酮 结构式 丙酮
CAS:67-64-1
氯仿 结构式 氯仿
CAS:67-66-3
L-谷氨酰胺 结构式 L-谷氨酰胺
CAS:56-85-9
戊二醛 结构式 戊二醛
CAS:111-30-8
1-(3-二甲基氨基丙基)-3-乙基碳二亚胺 结构式 1-(3-二甲基氨基丙基)-3-乙基碳二亚胺
CAS:1892-57-5
盐酸丁卡因 结构式 盐酸丁卡因
CAS:136-47-0
赛拉嗪 结构式 赛拉嗪
CAS:7361-61-7
碘化丙啶 结构式 碘化丙啶
CAS:25535-16-4
N-羟基琥珀酰亚胺 结构式 N-羟基琥珀酰亚胺
CAS:6066-82-6
偶氮二甲酸二乙酯 结构式 偶氮二甲酸二乙酯
CAS:1972-28-7