前往化源商城

American Journal of Physiology - Endocrinology and Metabolism 2013-11-01

Palmitoleic acid (n-7) increases white adipocyte lipolysis and lipase content in a PPARα-dependent manner.

Andressa Bolsoni-Lopes, William T Festuccia, Talita S M Farias, Patricia Chimin, Francisco L Torres-Leal, Priscilla B M Derogis, Paula B de Andrade, Sayuri Miyamoto, Fabio B Lima, Rui Curi, Maria Isabel C Alonso-Vale

文献索引:Am. J. Physiol. Endocrinol. Metab. 305(9) , E1093-102, (2013)

全文:HTML全文

摘要

We investigated whether palmitoleic acid, a fatty acid that enhances whole body glucose disposal and suppresses hepatic steatosis, modulates triacylglycerol (TAG) metabolism in adipocytes. For this, both differentiated 3T3-L1 cells treated with either palmitoleic acid (16:1n7, 200 μM) or palmitic acid (16:0, 200 μM) for 24 h and primary adipocytes from wild-type or PPARα-deficient mice treated with 16:1n7 (300 mg·kg(-1)·day(-1)) or oleic acid (18:1n9, 300 mg·kg(-1)·day(-1)) by gavage for 10 days were evaluated for lipolysis, TAG, and glycerol 3-phosphate synthesis and gene and protein expression profile. Treatment of differentiated 3T3-L1 cells with 16:1n7, but not 16:0, increased basal and isoproterenol-stimulated lipolysis, mRNA levels of adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) and protein content of ATGL and pSer(660)-HSL. Such increase in lipolysis induced by 16:1n7, which can be prevented by pharmacological inhibition of PPARα, was associated with higher rates of PPARα binding to DNA. In contrast to lipolysis, both 16:1n7 and 16:0 increased fatty acid incorporation into TAG and glycerol 3-phosphate synthesis from glucose without affecting glyceroneogenesis and glycerokinase expression. Corroborating in vitro findings, treatment of wild-type but not PPARα-deficient mice with 16:1n7 increased primary adipocyte basal and stimulated lipolysis and ATGL and HSL mRNA levels. In contrast to lipolysis, however, 16:1n7 treatment increased fatty acid incorporation into TAG and glycerol 3-phosphate synthesis from glucose in both wild-type and PPARα-deficient mice. In conclusion, palmitoleic acid increases adipocyte lipolysis and lipases by a mechanism that requires a functional PPARα.

相关化合物

结构式 名称/CAS号 全部文献
酯酶 来源于猪肝脏 结构式 酯酶 来源于猪肝脏
CAS:9016-18-6
棕榈油酸 结构式 棕榈油酸
CAS:373-49-9
胆固醇酯酶 来源于猪胰腺 结构式 胆固醇酯酶 来源于猪胰腺
CAS:9026-00-0