前往化源商城

Archives of Toxicology 2015-03-01

Superparamagnetic iron oxide nanoparticles exacerbate the risks of reactive oxygen species-mediated external stresses.

Cheng Luo, Yan Li, Liang Yang, Xun Wang, Jiangang Long, Jiankang Liu

文献索引:Arch. Toxicol. 89(3) , 357-69, (2015)

全文:HTML全文

摘要

Superparamagnetic iron oxide nanoparticles (IONPs) have been widely applied in numerous biomedical fields. The evaluation of the toxicity of IONPs to the environment and human beings is indispensable to guide their applications. IONPs are usually considered to have good biocompatibility; however, some literatures have reported the toxicity of IONPs in vitro and in vivo. The controversy surrounding the biocompatibility of IONPs prompted us to carefully consider the biological effects of IONPs, especially under stress conditions. However, the potential risks of IONPs under stress conditions have not yet been evaluated in depth. Acrolein is widespread in the environment and modulates stress-induced gene activation and cell death in many organs and tissues. In this study, we assessed the sensitivity of H9c2 cardiomyocyte cells embedded with IONPs to acrolein and investigated the possible molecular mechanisms involved in this sensitivity. IONPs, which alone exhibited no toxicity, sensitized the H9c2 cardiomyocytes to acrolein-induced dysfunction. The IONP/acrolein treatment induced a loss of viability, membrane disruption, reactive oxygen species (ROS) generation, Erk activation, mitochondrial and lysosomal dysfunction, and necrosis in H9c2 cells. Treatment with an ROS generation inhibitor (diphenyleneiodonium) or an iron chelator (deferoxamine) prevented the IONP/acrolein-induced loss of viability, suggesting that ROS and IONP degradation facilitated the toxicity of the IONP/acrolein treatment in H9c2 cells. Our data suggest that cells embedded in IONPs are more vulnerable to oxidative stress, which confirms the hypothesis that nanoparticles can sensitize cells to the adverse effects of external stimulation. The present work provides a new perspective from which to evaluate the interactions between nanoparticles and cells.

相关化合物

结构式 名称/CAS号 全部文献
叔丁基过氧化氢 结构式 叔丁基过氧化氢
CAS:75-91-2
乙酸铵 结构式 乙酸铵
CAS:631-61-8
吖啶橙 结构式 吖啶橙
CAS:65-61-2
盐酸羟胺 结构式 盐酸羟胺
CAS:5470-11-1
2,3-萘基二缩醛 结构式 2,3-萘基二缩醛
CAS:7149-49-7
谷胱甘肽/5-L-谷氨酰-L-半胱氨酰甘氨酸 结构式 谷胱甘肽/5-L-谷氨酰-L-半胱氨酰甘氨酸
CAS:70-18-8
碘化丙啶 结构式 碘化丙啶
CAS:25535-16-4
CBIC2 结构式 CBIC2
CAS:3520-43-2
二氢乙锭 结构式 二氢乙锭
CAS:104821-25-2
氯化二亚苯基碘鎓 结构式 氯化二亚苯基碘鎓
CAS:4673-26-1