Genome-wide alteration of 5-hydroxymenthylcytosine in a mouse model of Alzheimer's disease.
Liqi Shu, Wenjia Sun, Liping Li, Zihui Xu, Li Lin, Pei Xie, Hui Shen, Luoxiu Huang, Qi Xu, Peng Jin, Xuekun Li
Index: BMC Genomics 17 , 381, (2016)
Full Text: HTML
Abstract
Alzheimer's disease (AD) is the most common form of neurodegenerative disorder that leads to a decline in cognitive function. In AD, aggregates of amyloid β peptide precede the accumulation of neurofibrillary tangles, both of which are hallmarks of the disease. The great majority (>90 %) of the AD cases are not originated from genetic defects, therefore supporting the central roles of epigenetic modifications that are acquired progressively during the life span. Strong evidences have indicated the implication of epigenetic modifications, including histone modification and DNA methylation, in AD. Recent studies revealed that 5-hydroxymethylcytosine (5hmC) is dynamically regulated during neurodevelopment and aging.We show that amyloid peptide 1-42 (Aβ1-42) could significantly reduce the overall level of 5hmC in vitro. We found that the level of 5hmC displayed differential response to the pathogenesis in different brain regions, including the cortex, cerebellum, and hippocampus of APP-PSEN1 double transgenic (DTg) mice. We observed a significant decrease of overall 5hmC in hippocampus, but not in cortex and cerebellum, as the DTg mice aged. Genome-wide profiling identified differential hydroxymethylation regions (DhMRs) in DTg mice, which are highly enriched in introns, exons and intergenic regions. Gene ontology analyses indicated that DhMR-associated genes are highly enriched in multiple signaling pathways involving neuronal development/differentiation and neuronal function/survival.5hmC-mediated epigenetic regulation could potentially be involved in the pathogenesis of AD.
Related Compounds
Related Articles:
2015-07-01
[Appl. Microbiol. Biotechnol. 99 , 5825-32, (2015)]
1993-05-11
[Biochemistry 32 , 4693-4697, (1993)]
Induction of neuronal death by microglial AGE-albumin: implications for Alzheimer's disease.
2012-01-01
[PLoS ONE 7 , e37917, (2012)]
2016-01-01
[Sci. Rep. 6 , 20879, (2016)]
2016-01-01
[Front. Neurosci. 10 , 94, (2016)]