A mechanism for hydroxylation by tyrosine hydroxylase based on partitioning of substituted phenylalanines.
P J Hillas, P F Fitzpatrick
Index: Biochemistry 35 , 6969, (1996)
Full Text: HTML
Abstract
The iron-containing enzyme tyrosine hydroxylase catalyzes the hydroxylation of tyrosine to dihydroxyphenylalanine. A series of 4-X-substituted (X = H, F, Br, Cl, CH3, or CH3O) phenylalanines have been characterized as substrates to gain insight into the mechanism of hydroxylation. Multiple hydroxylated products were formed in most cases. As the size of the substituent at the 4-position increased, the site of hydroxylation switched from the 4- to the 3-position of the aromatic ring. The total amount of product formed with each amino acid showed a very good correlation with the sigma parameter of the substituent, with rho values of -4.3 +/- 0.7 or -5.6 +/- 0.8 when tetrahydrobiopterin or 6-methyltetrahydropterin, respectively, was used as cosubstrate. These values are consistent with a highly electron deficient transition state for hydroxylation. Oxygen addition at the 4-position resulted in either elimination of the substituent to form tyrosine or an NIH shift to form the respective 3-X-tyrosine. The relative amount of the product due to an NIH shift decreased in the order Br > CH3 > Cl >> F approximately CH3O approximately 0. A chemical mechanism for hydroxylation by tyrosine hydroxylase is presented to account for product formation from the various 4-substituted phenylalanines.
Related Compounds
Related Articles:
Chemical genetics reveals a complex functional ground state of neural stem cells.
2007-05-01
[Nat. Chem. Biol. 3(5) , 268-273, (2007)]
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
2009-10-01
[Nat. Chem. Biol. 5 , 765-71, (2009)]
1994-10-07
[J. Biol. Chem. 269 , 24637, (1994)]
1981-02-01
[Eur. J. Cell Biol. 23 , 312-316, (1981)]