FEBS Letters 2016-03-01

Structural insights into the difference in substrate recognition of two mannoside phosphorylases from two GH130 subfamilies.

Yuxin Ye, Wataru Saburi, Rei Odaka, Koji Kato, Naofumi Sakurai, Keisuke Komoda, Mamoru Nishimoto, Motomitsu Kitaoka, Haruhide Mori, Min Yao

Index: FEBS Lett. 590 , 828-37, (2016)

Full Text: HTML

Abstract

In Ruminococcus albus, 4-O-β-D-mannosyl-D-glucose phosphorylase (RaMP1) and β-(1,4)-mannooligosaccharide phosphorylase (RaMP2) belong to two subfamilies of glycoside hydrolase family 130. The two enzymes phosphorolyze β-mannosidic linkages at the nonreducing ends of their substrates, and have substantially diverse substrate specificity. The differences in their mechanism of substrate binding have not yet been fully clarified. In the present study, we report the crystal structures of RaMP1 with/without 4-O-β-D-mannosyl-d-glucose and RaMP2 with/without β-(1→4)-mannobiose. The structures of the two enzymes differ at the +1 subsite of the substrate-binding pocket. Three loops are proposed to determine the different substrate specificities. One of these loops is contributed from the adjacent molecule of the oligomer structure. In RaMP1, His245 of loop 3 forms a hydrogen-bond network with the substrate through a water molecule, and is indispensible for substrate binding.© 2016 Federation of European Biochemical Societies.


Related Compounds

Related Articles:

Capillary electrophoresis fingerprinting of 8-aminopyrene-1,3,6-trisulfonate derivatized nitrocellulose after partial acid depolymerization.

2015-03-27

[J. Chromatogr. A. 1387 , 134-43, (2015)]

Combining free and aggregated cellulolytic systems in the cellulosome-producing bacterium Ruminiclostridium cellulolyticum.

2015-01-01

[Biotechnol. Biofuels 8 , 114, (2015)]

Multifunctional cellulolytic auxiliary activity protein HcAA10-2 from Hahella chejuensis enhances enzymatic hydrolysis of crystalline cellulose.

2015-04-01

[Appl. Microbiol. Biotechnol. 99(7) , 3041-55, (2015)]

Structural insights into cellulolytic and chitinolytic enzymes revealing crucial residues of insect β-N-acetyl-D-hexosaminidase.

2012-01-01

[PLoS ONE 7(12) , e52225, (2012)]

The identification and molecular characterization of the first archaeal bifunctional exo-β-glucosidase/N-acetyl-β-glucosaminidase demonstrate that family GH116 is made of three functionally distinct subfamilies.

2014-01-01

[Biochim. Biophys. Acta 1840(1) , 367-77, (2014)]

More Articles...