Inhibition of thioredoxin 1 leads to apoptosis in drug-resistant multiple myeloma.
Prahlad V Raninga, Giovanna Di Trapani, Slavica Vuckovic, Maneet Bhatia, Kathryn F Tonissen
Index: Oncotarget 6 , 15410-24, (2015)
Full Text: HTML
Abstract
Multiple myeloma (MM) is a hematological malignancy characterized by the aberrant accumulation of clonal plasma cells in the bone marrow. Despite recent advancement in anti-myeloma treatment, MM remains an incurable disease. This study showed higher intrinsic oxidative stress and higher Trx1 and TrxR1 protein levels in MM cells compared to normal cells. Drug-induced Trx1 (PX-12) and TrxR1 (Auranofin) inhibition disrupted redox homeostasis resulting in ROS-induced apoptosis in MM cells and a reduction in clonogenic activity. Knockdown of either Trx1 or TrxR1 reduced MM cell viability. Trx1 inhibition by PX-12 sensitized MM cells to undergo apoptosis in response to the NF-κβ inhibitors, BAY 11-7082 and curcumin. PX-12 treatment decreased the expression of the NF-κβ subunit p65 in MM cells. Bortezomib-resistant MM cells contained higher Trx1 protein levels compared to the parental cells and PX-12 treatment resulted in apoptosis. Thus, increased Trx1 enhances MM cell growth and survival and exerts resistance to NF-κβ inhibitors. Therefore inhibiting the thioredoxin system may be an effective therapeutic strategy to treat newly diagnosed as well as relapsed/refractory MM.
Related Compounds
Related Articles:
2015-01-01
[Nat. Commun. 6 , 5794, (2015)]
Targeting glucose uptake with siRNA-based nanomedicine for cancer therapy.
2015-05-01
[Biomaterials 51 , 1-11, (2015)]
2015-04-22
[J. Ethnopharmacol. 164 , 265-72, (2015)]
2015-01-01
[Drug Des. Devel. Ther. 9 , 1555-84, (2015)]
2015-04-01
[Dev. Dyn. 244(4) , 591-606, (2015)]